基于脑电图信号的睡眠阶段分级评分系统

Chih-Sheng Huang, Chun-Ling Lin, L. Ko, Shen-Yi Liu, Tung-Ping Su, Chin-Teng Lin
{"title":"基于脑电图信号的睡眠阶段分级评分系统","authors":"Chih-Sheng Huang, Chun-Ling Lin, L. Ko, Shen-Yi Liu, Tung-Ping Su, Chin-Teng Lin","doi":"10.1109/CCMB.2013.6609157","DOIUrl":null,"url":null,"abstract":"The study adopts the structure of hierarchical classification to develop an automatic sleep stage classification system using forehead (Fpl and Fp2) EEG signals. The hierarchical classification consists of a preliminary wake detection rule, a novel feature extraction method based on American Academy of Sleep Medicine (AASM) scoring manual, feature selection methods and SVM. After estimating the preliminary sleep stages, two adaptive adjustment schemes are applied to adjust the preliminary sleep stages and provide the final estimation of sleep stages. Clinical testing reveals that the proposed automatic sleep stage classification system is about 77% accuracy and 67% kappa for individual 10 normal subjects. This system could provide the possibility of long term sleep monitoring at home and provide a preliminary result of sleep stages so that doctor could decide if a patient needs to have a detailed diagnosis using Polysomnography (PSG) system in a sleep laboratory of hospital.","PeriodicalId":395025,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A hierarchical classification system for sleep stage scoring via forehead EEG signals\",\"authors\":\"Chih-Sheng Huang, Chun-Ling Lin, L. Ko, Shen-Yi Liu, Tung-Ping Su, Chin-Teng Lin\",\"doi\":\"10.1109/CCMB.2013.6609157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study adopts the structure of hierarchical classification to develop an automatic sleep stage classification system using forehead (Fpl and Fp2) EEG signals. The hierarchical classification consists of a preliminary wake detection rule, a novel feature extraction method based on American Academy of Sleep Medicine (AASM) scoring manual, feature selection methods and SVM. After estimating the preliminary sleep stages, two adaptive adjustment schemes are applied to adjust the preliminary sleep stages and provide the final estimation of sleep stages. Clinical testing reveals that the proposed automatic sleep stage classification system is about 77% accuracy and 67% kappa for individual 10 normal subjects. This system could provide the possibility of long term sleep monitoring at home and provide a preliminary result of sleep stages so that doctor could decide if a patient needs to have a detailed diagnosis using Polysomnography (PSG) system in a sleep laboratory of hospital.\",\"PeriodicalId\":395025,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCMB.2013.6609157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCMB.2013.6609157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本研究采用分层分类的结构,开发了一种基于前额(Fpl和Fp2)脑电信号的睡眠阶段自动分类系统。分层分类包括一种初步的唤醒检测规则、一种基于美国睡眠医学会(AASM)评分手册的特征提取方法、特征选择方法和支持向量机。在预估睡眠阶段后,采用两种自适应调整方案对预估睡眠阶段进行调整,并给出最终的睡眠阶段估计。临床试验表明,所提出的睡眠阶段自动分类系统对10名正常受试者的准确率约为77%,kappa约为67%。该系统可以提供家庭长期睡眠监测的可能性,并提供睡眠阶段的初步结果,以便医生决定是否需要使用医院睡眠实验室的多导睡眠图(PSG)系统对患者进行详细诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical classification system for sleep stage scoring via forehead EEG signals
The study adopts the structure of hierarchical classification to develop an automatic sleep stage classification system using forehead (Fpl and Fp2) EEG signals. The hierarchical classification consists of a preliminary wake detection rule, a novel feature extraction method based on American Academy of Sleep Medicine (AASM) scoring manual, feature selection methods and SVM. After estimating the preliminary sleep stages, two adaptive adjustment schemes are applied to adjust the preliminary sleep stages and provide the final estimation of sleep stages. Clinical testing reveals that the proposed automatic sleep stage classification system is about 77% accuracy and 67% kappa for individual 10 normal subjects. This system could provide the possibility of long term sleep monitoring at home and provide a preliminary result of sleep stages so that doctor could decide if a patient needs to have a detailed diagnosis using Polysomnography (PSG) system in a sleep laboratory of hospital.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信