膨胀和侵蚀cnn鲁棒设计的两个定理

Shu Jian, B. Zhao, L. Min
{"title":"膨胀和侵蚀cnn鲁棒设计的两个定理","authors":"Shu Jian, B. Zhao, L. Min","doi":"10.1109/ICCCAS.2007.4348189","DOIUrl":null,"url":null,"abstract":"The cellular neural/nonlinear network (CNN) has become a new tool for image and signal processing, robotic and biological visions, and higher brain functions. Based our previous research, this paper set up two new theorems of robust designs for Dilation and Erosion CNNs processing gray-scale images, which provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Four numerical simulation examples for Dilation and Erosion CNNs are given to illustrate the effectiveness of our theorems.","PeriodicalId":218351,"journal":{"name":"2007 International Conference on Communications, Circuits and Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Two Theorems on the Robust Designs for Dilation and Erosion CNNs\",\"authors\":\"Shu Jian, B. Zhao, L. Min\",\"doi\":\"10.1109/ICCCAS.2007.4348189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cellular neural/nonlinear network (CNN) has become a new tool for image and signal processing, robotic and biological visions, and higher brain functions. Based our previous research, this paper set up two new theorems of robust designs for Dilation and Erosion CNNs processing gray-scale images, which provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Four numerical simulation examples for Dilation and Erosion CNNs are given to illustrate the effectiveness of our theorems.\",\"PeriodicalId\":218351,\"journal\":{\"name\":\"2007 International Conference on Communications, Circuits and Systems\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Communications, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCAS.2007.4348189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Communications, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2007.4348189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

细胞神经/非线性网络(CNN)已成为图像和信号处理、机器人和生物视觉以及高级脑功能的新工具。在前人研究的基础上,本文建立了两个新的用于处理灰度图像的膨胀cnn和侵蚀cnn鲁棒性设计定理,分别提供了参数不等式来确定实现规定图像处理函数的参数间隔。给出了四个膨胀和侵蚀cnn的数值模拟实例来说明我们的定理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Theorems on the Robust Designs for Dilation and Erosion CNNs
The cellular neural/nonlinear network (CNN) has become a new tool for image and signal processing, robotic and biological visions, and higher brain functions. Based our previous research, this paper set up two new theorems of robust designs for Dilation and Erosion CNNs processing gray-scale images, which provide parameter inequalities to determine parameter intervals for implementing prescribed image processing functions, respectively. Four numerical simulation examples for Dilation and Erosion CNNs are given to illustrate the effectiveness of our theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信