{"title":"使用基于云的学习来对抗恶意软件的进化","authors":"Jacob Ouellette, A. Pfeffer, Arun Lakhotia","doi":"10.1109/MALWARE.2013.6703689","DOIUrl":null,"url":null,"abstract":"Recent years have seen an explosion in the number and sophistication of malware attacks. The sheer volume of novel malware has made purely manual signature development impractical and has led to research on applying machine learning and data mining to automatically infer malware signatures in the wild. Unfortunately, researchers have recently found ways to game the machine learning algorithms and learn to predict which samples the learning algorithms will classify as benign or malicious, thus opening the door for innovative deception on the part of malware developers. To counter this threat, we are developing our Semi-Supervised Algorithms against Malware Evolution (SESAME) program, which uses online learning to evolve as new malware is encountered, recognizing novel families and adapting its model of families as they themselves evolve. It uses semi-supervised learning to enable it to learn from both labeled and unlabeled malware. SESAME combines a rich feature set with deep learning algorithms to learn the essential characteristics of malware that enable us to relate novel malware to existing malware. SESAME is being designed to be an enterprise-based system with learning in the cloud and rapid endpoint classification.","PeriodicalId":325281,"journal":{"name":"2013 8th International Conference on Malicious and Unwanted Software: \"The Americas\" (MALWARE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Countering malware evolution using cloud-based learning\",\"authors\":\"Jacob Ouellette, A. Pfeffer, Arun Lakhotia\",\"doi\":\"10.1109/MALWARE.2013.6703689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen an explosion in the number and sophistication of malware attacks. The sheer volume of novel malware has made purely manual signature development impractical and has led to research on applying machine learning and data mining to automatically infer malware signatures in the wild. Unfortunately, researchers have recently found ways to game the machine learning algorithms and learn to predict which samples the learning algorithms will classify as benign or malicious, thus opening the door for innovative deception on the part of malware developers. To counter this threat, we are developing our Semi-Supervised Algorithms against Malware Evolution (SESAME) program, which uses online learning to evolve as new malware is encountered, recognizing novel families and adapting its model of families as they themselves evolve. It uses semi-supervised learning to enable it to learn from both labeled and unlabeled malware. SESAME combines a rich feature set with deep learning algorithms to learn the essential characteristics of malware that enable us to relate novel malware to existing malware. SESAME is being designed to be an enterprise-based system with learning in the cloud and rapid endpoint classification.\",\"PeriodicalId\":325281,\"journal\":{\"name\":\"2013 8th International Conference on Malicious and Unwanted Software: \\\"The Americas\\\" (MALWARE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Malicious and Unwanted Software: \\\"The Americas\\\" (MALWARE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MALWARE.2013.6703689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Malicious and Unwanted Software: \"The Americas\" (MALWARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALWARE.2013.6703689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Countering malware evolution using cloud-based learning
Recent years have seen an explosion in the number and sophistication of malware attacks. The sheer volume of novel malware has made purely manual signature development impractical and has led to research on applying machine learning and data mining to automatically infer malware signatures in the wild. Unfortunately, researchers have recently found ways to game the machine learning algorithms and learn to predict which samples the learning algorithms will classify as benign or malicious, thus opening the door for innovative deception on the part of malware developers. To counter this threat, we are developing our Semi-Supervised Algorithms against Malware Evolution (SESAME) program, which uses online learning to evolve as new malware is encountered, recognizing novel families and adapting its model of families as they themselves evolve. It uses semi-supervised learning to enable it to learn from both labeled and unlabeled malware. SESAME combines a rich feature set with deep learning algorithms to learn the essential characteristics of malware that enable us to relate novel malware to existing malware. SESAME is being designed to be an enterprise-based system with learning in the cloud and rapid endpoint classification.