稀疏复合量化

Ting Zhang, Guo-Jun Qi, Jinhui Tang, Jingdong Wang
{"title":"稀疏复合量化","authors":"Ting Zhang, Guo-Jun Qi, Jinhui Tang, Jingdong Wang","doi":"10.1109/CVPR.2015.7299085","DOIUrl":null,"url":null,"abstract":"The quantization techniques have shown competitive performance in approximate nearest neighbor search. The state-of-the-art algorithm, composite quantization, takes advantage of the compositionabity, i.e., the vector approximation accuracy, as opposed to product quantization and Cartesian k-means. However, we have observed that the runtime cost of computing the distance table in composite quantization, which is used as a lookup table for fast distance computation, becomes nonnegligible in real applications, e.g., reordering the candidates retrieved from the inverted index when handling very large scale databases. To address this problem, we develop a novel approach, called sparse composite quantization, which constructs sparse dictionaries. The benefit is that the distance evaluation between the query and the dictionary element (a sparse vector) is accelerated using the efficient sparse vector operation, and thus the cost of distance table computation is reduced a lot. Experiment results on large scale ANN retrieval tasks (1M SIFTs and 1B SIFTs) and applications to object retrieval show that the proposed approach yields competitive performance: superior search accuracy to product quantization and Cartesian k-means with almost the same computing cost, and much faster ANN search than composite quantization with the same level of accuracy.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Sparse composite quantization\",\"authors\":\"Ting Zhang, Guo-Jun Qi, Jinhui Tang, Jingdong Wang\",\"doi\":\"10.1109/CVPR.2015.7299085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantization techniques have shown competitive performance in approximate nearest neighbor search. The state-of-the-art algorithm, composite quantization, takes advantage of the compositionabity, i.e., the vector approximation accuracy, as opposed to product quantization and Cartesian k-means. However, we have observed that the runtime cost of computing the distance table in composite quantization, which is used as a lookup table for fast distance computation, becomes nonnegligible in real applications, e.g., reordering the candidates retrieved from the inverted index when handling very large scale databases. To address this problem, we develop a novel approach, called sparse composite quantization, which constructs sparse dictionaries. The benefit is that the distance evaluation between the query and the dictionary element (a sparse vector) is accelerated using the efficient sparse vector operation, and thus the cost of distance table computation is reduced a lot. Experiment results on large scale ANN retrieval tasks (1M SIFTs and 1B SIFTs) and applications to object retrieval show that the proposed approach yields competitive performance: superior search accuracy to product quantization and Cartesian k-means with almost the same computing cost, and much faster ANN search than composite quantization with the same level of accuracy.\",\"PeriodicalId\":444472,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2015.7299085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7299085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

量化技术在近似最近邻搜索中显示出有竞争力的性能。最先进的算法,复合量化,利用了可组合性,即向量逼近精度,而不是乘积量化和笛卡尔k-means。然而,我们已经观察到,在复合量化中计算距离表的运行时成本(用作快速距离计算的查找表)在实际应用中变得不可忽略,例如,在处理非常大规模的数据库时,从倒排索引中检索到的候选项重新排序。为了解决这个问题,我们开发了一种新的方法,称为稀疏复合量化,它构造稀疏字典。这样做的好处是使用高效的稀疏向量操作加速了查询和字典元素(稀疏向量)之间的距离计算,从而大大降低了距离表计算的成本。大规模人工神经网络检索任务(1M SIFTs和1B SIFTs)和对象检索应用的实验结果表明,该方法在计算成本几乎相同的情况下,搜索精度优于产品量化和笛卡尔k-means,在相同精度水平下,人工神经网络搜索速度远快于复合量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse composite quantization
The quantization techniques have shown competitive performance in approximate nearest neighbor search. The state-of-the-art algorithm, composite quantization, takes advantage of the compositionabity, i.e., the vector approximation accuracy, as opposed to product quantization and Cartesian k-means. However, we have observed that the runtime cost of computing the distance table in composite quantization, which is used as a lookup table for fast distance computation, becomes nonnegligible in real applications, e.g., reordering the candidates retrieved from the inverted index when handling very large scale databases. To address this problem, we develop a novel approach, called sparse composite quantization, which constructs sparse dictionaries. The benefit is that the distance evaluation between the query and the dictionary element (a sparse vector) is accelerated using the efficient sparse vector operation, and thus the cost of distance table computation is reduced a lot. Experiment results on large scale ANN retrieval tasks (1M SIFTs and 1B SIFTs) and applications to object retrieval show that the proposed approach yields competitive performance: superior search accuracy to product quantization and Cartesian k-means with almost the same computing cost, and much faster ANN search than composite quantization with the same level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信