鱼类浓度图的模糊逻辑逼近和深度学习神经网络

J. Mäkiö, D. Glukhov, R. Bohush, T. Hlukhava, I. Zakharava
{"title":"鱼类浓度图的模糊逻辑逼近和深度学习神经网络","authors":"J. Mäkiö, D. Glukhov, R. Bohush, T. Hlukhava, I. Zakharava","doi":"10.2991/icdtli-19.2019.84","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to obtain topographic maps of lakes, maps of fish concentration and a map of predator location based on the results of an intelligent sonar data processing. The algorithm is based on the following steps: input frame separation into overlapping blocks, blocks-processing using convolutional neural networks (CNN) YOLO v2, and merging extracted bounding boxes around one object. To construct maps of the distribution of features along the lake, we propose a novel method for constructing the approximation of GPSreferenced CNN results based on the original implementation of fuzzy logic. Keywords— sonar data; fish concentration; maps of lakes; fuzzy logic; convolutional neural networks","PeriodicalId":377233,"journal":{"name":"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Logic Approximation and Deep Learning Neural Network for Fish Concentration Maps\",\"authors\":\"J. Mäkiö, D. Glukhov, R. Bohush, T. Hlukhava, I. Zakharava\",\"doi\":\"10.2991/icdtli-19.2019.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm to obtain topographic maps of lakes, maps of fish concentration and a map of predator location based on the results of an intelligent sonar data processing. The algorithm is based on the following steps: input frame separation into overlapping blocks, blocks-processing using convolutional neural networks (CNN) YOLO v2, and merging extracted bounding boxes around one object. To construct maps of the distribution of features along the lake, we propose a novel method for constructing the approximation of GPSreferenced CNN results based on the original implementation of fuzzy logic. Keywords— sonar data; fish concentration; maps of lakes; fuzzy logic; convolutional neural networks\",\"PeriodicalId\":377233,\"journal\":{\"name\":\"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/icdtli-19.2019.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Digital Technologies in Logistics and Infrastructure (ICDTLI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/icdtli-19.2019.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于智能声纳数据处理结果获取湖泊地形图、鱼类密集度图和捕食者位置图的算法。该算法基于以下步骤:将输入帧分离为重叠块,使用卷积神经网络(CNN) YOLO v2进行块处理,并合并提取的围绕一个对象的边界框。为了构建沿湖特征分布图,我们在原有模糊逻辑实现的基础上,提出了一种构造gps参考CNN结果近似的新方法。关键词:声纳数据;鱼浓度;湖泊地图;模糊逻辑;卷积神经网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Logic Approximation and Deep Learning Neural Network for Fish Concentration Maps
This paper proposes an algorithm to obtain topographic maps of lakes, maps of fish concentration and a map of predator location based on the results of an intelligent sonar data processing. The algorithm is based on the following steps: input frame separation into overlapping blocks, blocks-processing using convolutional neural networks (CNN) YOLO v2, and merging extracted bounding boxes around one object. To construct maps of the distribution of features along the lake, we propose a novel method for constructing the approximation of GPSreferenced CNN results based on the original implementation of fuzzy logic. Keywords— sonar data; fish concentration; maps of lakes; fuzzy logic; convolutional neural networks
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信