利用机器学习技术对慢性肾脏疾病进行预防性诊断

Reem A. Alassaf, Khawla A. Alsulaim, Noura Y. Alroomi, N. Alsharif, Mishael F. Aljubeir, S. Olatunji, Alaa Y. Alahmadi, Mohammed Imran, Rahmah Alzahrani, Nora S. Alturayeif
{"title":"利用机器学习技术对慢性肾脏疾病进行预防性诊断","authors":"Reem A. Alassaf, Khawla A. Alsulaim, Noura Y. Alroomi, N. Alsharif, Mishael F. Aljubeir, S. Olatunji, Alaa Y. Alahmadi, Mohammed Imran, Rahmah Alzahrani, Nora S. Alturayeif","doi":"10.1109/INNOVATIONS.2018.8606040","DOIUrl":null,"url":null,"abstract":"Chronic Kidney Disease (CKD) is a major public health concern with rising prevalence. In Saudi Arabia, approximately 2 Billion Riyals are solely allocated for renal replacement therapy which is required for patients with advanced stages of CKD. Therefore, this study aims to decrease the number of patients and the expenses needed for treatment by preemptively diagnosing chronic kidney disease accurately using data mining and machine learning techniques. Data have been collected from a region that has never been explored before in literature. This study uses Saudi data retrieved from King Fahd University Hospital(KFUH) in Khobar to carry out the experiment. Experimental Results show that ANN, SVM, Naïve Bayes achieved a testing accuracy of 98.0% while k-NN has achieved an accuracy of 93.9%.","PeriodicalId":319472,"journal":{"name":"2018 International Conference on Innovations in Information Technology (IIT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Preemptive Diagnosis of Chronic Kidney Disease Using Machine Learning Techniques\",\"authors\":\"Reem A. Alassaf, Khawla A. Alsulaim, Noura Y. Alroomi, N. Alsharif, Mishael F. Aljubeir, S. Olatunji, Alaa Y. Alahmadi, Mohammed Imran, Rahmah Alzahrani, Nora S. Alturayeif\",\"doi\":\"10.1109/INNOVATIONS.2018.8606040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic Kidney Disease (CKD) is a major public health concern with rising prevalence. In Saudi Arabia, approximately 2 Billion Riyals are solely allocated for renal replacement therapy which is required for patients with advanced stages of CKD. Therefore, this study aims to decrease the number of patients and the expenses needed for treatment by preemptively diagnosing chronic kidney disease accurately using data mining and machine learning techniques. Data have been collected from a region that has never been explored before in literature. This study uses Saudi data retrieved from King Fahd University Hospital(KFUH) in Khobar to carry out the experiment. Experimental Results show that ANN, SVM, Naïve Bayes achieved a testing accuracy of 98.0% while k-NN has achieved an accuracy of 93.9%.\",\"PeriodicalId\":319472,\"journal\":{\"name\":\"2018 International Conference on Innovations in Information Technology (IIT)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Innovations in Information Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INNOVATIONS.2018.8606040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2018.8606040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

慢性肾脏疾病(CKD)是一个主要的公共卫生问题,患病率不断上升。在沙特阿拉伯,大约20亿里亚尔专门用于晚期CKD患者所需的肾脏替代疗法。因此,本研究旨在利用数据挖掘和机器学习技术,通过对慢性肾脏疾病进行准确的预防性诊断,减少患者数量和治疗所需的费用。数据是从一个以前文献中从未探索过的地区收集的。本研究使用从Khobar法赫德国王大学医院(KFUH)检索的沙特数据进行实验。实验结果表明,ANN、SVM、Naïve贝叶斯的测试准确率达到98.0%,k-NN的测试准确率达到93.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preemptive Diagnosis of Chronic Kidney Disease Using Machine Learning Techniques
Chronic Kidney Disease (CKD) is a major public health concern with rising prevalence. In Saudi Arabia, approximately 2 Billion Riyals are solely allocated for renal replacement therapy which is required for patients with advanced stages of CKD. Therefore, this study aims to decrease the number of patients and the expenses needed for treatment by preemptively diagnosing chronic kidney disease accurately using data mining and machine learning techniques. Data have been collected from a region that has never been explored before in literature. This study uses Saudi data retrieved from King Fahd University Hospital(KFUH) in Khobar to carry out the experiment. Experimental Results show that ANN, SVM, Naïve Bayes achieved a testing accuracy of 98.0% while k-NN has achieved an accuracy of 93.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信