{"title":"完成了三个正交平面上的局部结构模式,用于动态纹理识别","authors":"Thanh Tuan Nguyen, T. Nguyen, F. Bouchara","doi":"10.1109/IPTA.2017.8310130","DOIUrl":null,"url":null,"abstract":"Dynamic texture (DT) is a challenging problem in computer vision because of the chaotic motion of textures. We address in this paper a new dynamic texture operator by considering local structure patterns (LSP) and completed local binary patterns (CLBP) for static images in three orthogonal planes to capture spatial-temporal texture structures. Since the typical operator of local binary patterns (LBP), which uses center pixel for thresholding, has some limitations such as sensitivity to noise and near uniform regions, the proposed approach can deal with these drawbacks by using global and local texture information for adaptive thresholding and CLBP for exploiting complementary texture information in three orthogonal planes. Evaluations on different datasets of dynamic textures (UCLA, DynTex, DynTex++) show that our proposal significantly outperforms recent results in the state-of-the-art approaches.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Completed local structure patterns on three orthogonal planes for dynamic texture recognition\",\"authors\":\"Thanh Tuan Nguyen, T. Nguyen, F. Bouchara\",\"doi\":\"10.1109/IPTA.2017.8310130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic texture (DT) is a challenging problem in computer vision because of the chaotic motion of textures. We address in this paper a new dynamic texture operator by considering local structure patterns (LSP) and completed local binary patterns (CLBP) for static images in three orthogonal planes to capture spatial-temporal texture structures. Since the typical operator of local binary patterns (LBP), which uses center pixel for thresholding, has some limitations such as sensitivity to noise and near uniform regions, the proposed approach can deal with these drawbacks by using global and local texture information for adaptive thresholding and CLBP for exploiting complementary texture information in three orthogonal planes. Evaluations on different datasets of dynamic textures (UCLA, DynTex, DynTex++) show that our proposal significantly outperforms recent results in the state-of-the-art approaches.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Completed local structure patterns on three orthogonal planes for dynamic texture recognition
Dynamic texture (DT) is a challenging problem in computer vision because of the chaotic motion of textures. We address in this paper a new dynamic texture operator by considering local structure patterns (LSP) and completed local binary patterns (CLBP) for static images in three orthogonal planes to capture spatial-temporal texture structures. Since the typical operator of local binary patterns (LBP), which uses center pixel for thresholding, has some limitations such as sensitivity to noise and near uniform regions, the proposed approach can deal with these drawbacks by using global and local texture information for adaptive thresholding and CLBP for exploiting complementary texture information in three orthogonal planes. Evaluations on different datasets of dynamic textures (UCLA, DynTex, DynTex++) show that our proposal significantly outperforms recent results in the state-of-the-art approaches.