含可能接触的流束问题的存在性理论

Jean-J'erome Casanova, C. Grandmont, M. Hillairet
{"title":"含可能接触的流束问题的存在性理论","authors":"Jean-J'erome Casanova, C. Grandmont, M. Hillairet","doi":"10.5802/JEP.162","DOIUrl":null,"url":null,"abstract":"In this paper we consider a coupled system of pdes modelling the interaction between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam located on the upper part of the fluid domain boundary. We design a functional framework to define weak solutions in case of contact between the elastic beam and the bottom of the fluid cavity. We then prove that such solutions exist globally in time regardless a possible contact by approximating the beam equation by a damped beam and letting this additional viscosity vanishes.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On an existence theory for a fluid-beam problem encompassing possible contacts\",\"authors\":\"Jean-J'erome Casanova, C. Grandmont, M. Hillairet\",\"doi\":\"10.5802/JEP.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a coupled system of pdes modelling the interaction between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam located on the upper part of the fluid domain boundary. We design a functional framework to define weak solutions in case of contact between the elastic beam and the bottom of the fluid cavity. We then prove that such solutions exist globally in time regardless a possible contact by approximating the beam equation by a damped beam and letting this additional viscosity vanishes.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文考虑了二维不可压缩粘性流体与位于流体域边界上端的一维弹性梁之间相互作用的偏微分方程耦合系统。我们设计了一个函数框架来定义弹性梁与流体腔底接触时的弱解。然后,我们通过用阻尼梁近似梁方程并让这个附加粘度消失,证明了这种解在时间上全局存在,而不管可能的接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an existence theory for a fluid-beam problem encompassing possible contacts
In this paper we consider a coupled system of pdes modelling the interaction between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam located on the upper part of the fluid domain boundary. We design a functional framework to define weak solutions in case of contact between the elastic beam and the bottom of the fluid cavity. We then prove that such solutions exist globally in time regardless a possible contact by approximating the beam equation by a damped beam and letting this additional viscosity vanishes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信