预测第一个新月的可见度

Tafseer Ahmed
{"title":"预测第一个新月的可见度","authors":"Tafseer Ahmed","doi":"10.51153/kjcis.v3i2.52","DOIUrl":null,"url":null,"abstract":"This study presents an application of machine learning to predict whether the first crescent of the lunar month will be visible to naked eye on a given date. The study presents a dataset of successful and unsuccessful attempts to find the first crescent at the start of the lunar month. Previously, this problem was solved by analytically deriving the equations for visibility parameter(s) and manually fixing threshold values. However, we applied supervised machine learning on the independent variables of the problem, and the system learnt about the criteria of classification. The system gives precision of 0.88 and recall of 0.87 and hence it treats both false positives and false negatives equally well.","PeriodicalId":299009,"journal":{"name":"KIET Journal of Computing and Information Sciences","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting the Visibility of the First Crescent\",\"authors\":\"Tafseer Ahmed\",\"doi\":\"10.51153/kjcis.v3i2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an application of machine learning to predict whether the first crescent of the lunar month will be visible to naked eye on a given date. The study presents a dataset of successful and unsuccessful attempts to find the first crescent at the start of the lunar month. Previously, this problem was solved by analytically deriving the equations for visibility parameter(s) and manually fixing threshold values. However, we applied supervised machine learning on the independent variables of the problem, and the system learnt about the criteria of classification. The system gives precision of 0.88 and recall of 0.87 and hence it treats both false positives and false negatives equally well.\",\"PeriodicalId\":299009,\"journal\":{\"name\":\"KIET Journal of Computing and Information Sciences\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KIET Journal of Computing and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51153/kjcis.v3i2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KIET Journal of Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51153/kjcis.v3i2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究展示了一种机器学习的应用,用于预测在给定日期是否可以用肉眼看到农历月的第一个月牙。这项研究提供了一个数据集,包括在农历月初找到第一个新月的成功和不成功的尝试。以前,这个问题是通过解析推导可见性参数方程和手动确定阈值来解决的。然而,我们在问题的自变量上应用了监督机器学习,系统学习了分类的标准。该系统的准确率为0.88,召回率为0.87,因此它对假阳性和假阴性的处理都很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Visibility of the First Crescent
This study presents an application of machine learning to predict whether the first crescent of the lunar month will be visible to naked eye on a given date. The study presents a dataset of successful and unsuccessful attempts to find the first crescent at the start of the lunar month. Previously, this problem was solved by analytically deriving the equations for visibility parameter(s) and manually fixing threshold values. However, we applied supervised machine learning on the independent variables of the problem, and the system learnt about the criteria of classification. The system gives precision of 0.88 and recall of 0.87 and hence it treats both false positives and false negatives equally well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信