Toric加藤流形

Nicolina Istrati, A. Otiman, M. Pontecorvo, M. Ruggiero
{"title":"Toric加藤流形","authors":"Nicolina Istrati, A. Otiman, M. Pontecorvo, M. Ruggiero","doi":"10.5802/jep.208","DOIUrl":null,"url":null,"abstract":"We introduce and study a special class of Kato manifolds, which we call toric Kato manifolds. Their construction stems from toric geometry, as their universal covers are open subsets of toric algebraic varieties of non-finite type. This generalizes previous constructions of Tsuchihashi and Oda, and in complex dimension 2, retrieves the properly blown-up Inoue surfaces. We study the topological and analytical properties of toric Kato manifolds and link certain invariants to natural combinatorial data coming from the toric construction. Moreover, we produce families of flat degenerations of any toric Kato manifold, which serve as an essential tool in computing their Hodge numbers. In the last part, we study the Hermitian geometry of Kato manifolds. We give a characterization result for the existence of locally conformally Kahler metrics on any Kato manifold. Finally, we prove that no Kato manifold carries balanced metrics and that a large class of toric Kato manifolds of complex dimension $\\geq 3$ do not support pluriclosed metrics.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toric Kato manifolds\",\"authors\":\"Nicolina Istrati, A. Otiman, M. Pontecorvo, M. Ruggiero\",\"doi\":\"10.5802/jep.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study a special class of Kato manifolds, which we call toric Kato manifolds. Their construction stems from toric geometry, as their universal covers are open subsets of toric algebraic varieties of non-finite type. This generalizes previous constructions of Tsuchihashi and Oda, and in complex dimension 2, retrieves the properly blown-up Inoue surfaces. We study the topological and analytical properties of toric Kato manifolds and link certain invariants to natural combinatorial data coming from the toric construction. Moreover, we produce families of flat degenerations of any toric Kato manifold, which serve as an essential tool in computing their Hodge numbers. In the last part, we study the Hermitian geometry of Kato manifolds. We give a characterization result for the existence of locally conformally Kahler metrics on any Kato manifold. Finally, we prove that no Kato manifold carries balanced metrics and that a large class of toric Kato manifolds of complex dimension $\\\\geq 3$ do not support pluriclosed metrics.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入并研究了一类特殊的加藤流形,我们称之为环加藤流形。它们的构造源于环几何,因为它们的泛盖是非有限型环代数变种的开子集。这概括了之前土桥和小田的构造,并在复杂的2维中,检索了适当放大的井上曲面。我们研究了环面加藤流形的拓扑和解析性质,并将一些不变量与来自环面构造的自然组合数据联系起来。此外,我们还得到了任意环面加托流形的平退化族,作为计算其霍奇数的重要工具。最后,我们研究了加藤流形的厄米几何。给出了任意加藤流形上局部共形Kahler度量存在的一个刻划结果。最后,我们证明了没有Kato流形携带平衡度量,并且一大批复维的环状Kato流形$\geq 3$不支持多闭度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toric Kato manifolds
We introduce and study a special class of Kato manifolds, which we call toric Kato manifolds. Their construction stems from toric geometry, as their universal covers are open subsets of toric algebraic varieties of non-finite type. This generalizes previous constructions of Tsuchihashi and Oda, and in complex dimension 2, retrieves the properly blown-up Inoue surfaces. We study the topological and analytical properties of toric Kato manifolds and link certain invariants to natural combinatorial data coming from the toric construction. Moreover, we produce families of flat degenerations of any toric Kato manifold, which serve as an essential tool in computing their Hodge numbers. In the last part, we study the Hermitian geometry of Kato manifolds. We give a characterization result for the existence of locally conformally Kahler metrics on any Kato manifold. Finally, we prove that no Kato manifold carries balanced metrics and that a large class of toric Kato manifolds of complex dimension $\geq 3$ do not support pluriclosed metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信