基于Pcanet和显著特征融合的图像分类

Yanfei Chen, Yuliang Huang, Zhangchen Yan, G. Wang, Tiange Huang, Jinhu Hu
{"title":"基于Pcanet和显著特征融合的图像分类","authors":"Yanfei Chen, Yuliang Huang, Zhangchen Yan, G. Wang, Tiange Huang, Jinhu Hu","doi":"10.1109/AICIT55386.2022.9930220","DOIUrl":null,"url":null,"abstract":"Aiming at the shortcomings of traditional image classification model in extracting features, we propose an improved color contrast algorithm to extract higher quality saliency map. We first analyze the feature extraction ability of HC saliency algorithm in image classification and improve it by adding the location information, then we propose a novel features fusion module to combine the saliency map with the output features from PCANet to enhance the feature expression, contributing to classification capability of the model. The accuracy on Caltech101 and Pascal VOC2007 can achieve excellent performance by using our method.","PeriodicalId":231070,"journal":{"name":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Classification Based On Pcanet And Salient Feature Fusion\",\"authors\":\"Yanfei Chen, Yuliang Huang, Zhangchen Yan, G. Wang, Tiange Huang, Jinhu Hu\",\"doi\":\"10.1109/AICIT55386.2022.9930220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the shortcomings of traditional image classification model in extracting features, we propose an improved color contrast algorithm to extract higher quality saliency map. We first analyze the feature extraction ability of HC saliency algorithm in image classification and improve it by adding the location information, then we propose a novel features fusion module to combine the saliency map with the output features from PCANet to enhance the feature expression, contributing to classification capability of the model. The accuracy on Caltech101 and Pascal VOC2007 can achieve excellent performance by using our method.\",\"PeriodicalId\":231070,\"journal\":{\"name\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICIT55386.2022.9930220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Artificial Intelligence and Computer Information Technology (AICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICIT55386.2022.9930220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统图像分类模型在提取特征方面的不足,提出了一种改进的颜色对比算法,以提取更高质量的显著性图。首先分析了HC显著性算法在图像分类中的特征提取能力,并通过加入位置信息对其进行改进,然后提出了一种新的特征融合模块,将显著性图与PCANet输出的特征相结合,增强特征表达,提高了模型的分类能力。在Caltech101和Pascal VOC2007上使用我们的方法可以取得很好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Classification Based On Pcanet And Salient Feature Fusion
Aiming at the shortcomings of traditional image classification model in extracting features, we propose an improved color contrast algorithm to extract higher quality saliency map. We first analyze the feature extraction ability of HC saliency algorithm in image classification and improve it by adding the location information, then we propose a novel features fusion module to combine the saliency map with the output features from PCANet to enhance the feature expression, contributing to classification capability of the model. The accuracy on Caltech101 and Pascal VOC2007 can achieve excellent performance by using our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信