Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, M. Sharaf, Alexandros Labrinidis
{"title":"检测高度相关的实时数据流","authors":"Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, M. Sharaf, Alexandros Labrinidis","doi":"10.1145/3129292.3129298","DOIUrl":null,"url":null,"abstract":"More and more organizations (commercial, health, government and security) currently base their decisions on real-time analysis of fast arriving, large volumes of data streams. For such analysis to lead to actionable information in real-time and at the right time, the most recent data needs to be processed within a specified delay target. Effective solutions for analysis of such data streams rely on two techniques, (1) incremental sliding-window computation of aggregates, to avoid unnecessary recomputations and (2) intelligent scheduling of computational steps and operations. In this paper, we propose a solution that combines both of these techniques to find highly correlated data streams in real-time, using the Pearson Correlation Coefficient as a correlation metric for two windows of data streams. Specifically, we propose to partition a set of data streams into micro-batches that capture the delay target, use sliding windows within a range as the subsequences of values exhibiting a certain level of correlation, utilize the idea of sufficient statistics to incrementally compute the Pearson Correlation Coefficient of pairs of sliding windows, and adopt a deadline-aware priority scheduling to detect the highly correlated pairs of data streams. Our experimental results show that our scheme and in particular our Price-DCS with warm start scheduling algorithm outperform existing ones and enable high degree of interactivity in correlating live data streams micro-batches.","PeriodicalId":407894,"journal":{"name":"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detection of Highly Correlated Live Data Streams\",\"authors\":\"Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, M. Sharaf, Alexandros Labrinidis\",\"doi\":\"10.1145/3129292.3129298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More and more organizations (commercial, health, government and security) currently base their decisions on real-time analysis of fast arriving, large volumes of data streams. For such analysis to lead to actionable information in real-time and at the right time, the most recent data needs to be processed within a specified delay target. Effective solutions for analysis of such data streams rely on two techniques, (1) incremental sliding-window computation of aggregates, to avoid unnecessary recomputations and (2) intelligent scheduling of computational steps and operations. In this paper, we propose a solution that combines both of these techniques to find highly correlated data streams in real-time, using the Pearson Correlation Coefficient as a correlation metric for two windows of data streams. Specifically, we propose to partition a set of data streams into micro-batches that capture the delay target, use sliding windows within a range as the subsequences of values exhibiting a certain level of correlation, utilize the idea of sufficient statistics to incrementally compute the Pearson Correlation Coefficient of pairs of sliding windows, and adopt a deadline-aware priority scheduling to detect the highly correlated pairs of data streams. Our experimental results show that our scheme and in particular our Price-DCS with warm start scheduling algorithm outperform existing ones and enable high degree of interactivity in correlating live data streams micro-batches.\",\"PeriodicalId\":407894,\"journal\":{\"name\":\"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129292.3129298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129292.3129298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
More and more organizations (commercial, health, government and security) currently base their decisions on real-time analysis of fast arriving, large volumes of data streams. For such analysis to lead to actionable information in real-time and at the right time, the most recent data needs to be processed within a specified delay target. Effective solutions for analysis of such data streams rely on two techniques, (1) incremental sliding-window computation of aggregates, to avoid unnecessary recomputations and (2) intelligent scheduling of computational steps and operations. In this paper, we propose a solution that combines both of these techniques to find highly correlated data streams in real-time, using the Pearson Correlation Coefficient as a correlation metric for two windows of data streams. Specifically, we propose to partition a set of data streams into micro-batches that capture the delay target, use sliding windows within a range as the subsequences of values exhibiting a certain level of correlation, utilize the idea of sufficient statistics to incrementally compute the Pearson Correlation Coefficient of pairs of sliding windows, and adopt a deadline-aware priority scheduling to detect the highly correlated pairs of data streams. Our experimental results show that our scheme and in particular our Price-DCS with warm start scheduling algorithm outperform existing ones and enable high degree of interactivity in correlating live data streams micro-batches.