{"title":"基于禁忌搜索的动态可重构数字微流控生物芯片合成","authors":"E. Maftei, P. Pop, J. Madsen","doi":"10.1145/1629395.1629423","DOIUrl":null,"url":null,"abstract":"Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The \"digital\" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets, and hence they are highly reconfigurable and scalable. A digital biochip is composed of a two-dimensional array of cells, together with reservoirs for storing the samples and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on which operations are executed. During the execution of an operation, the virtual device can be reconfigured to occupy a different group of cells on the array. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determines the allocation, resource binding, scheduling and placement of the operations in the application. In our approach, we consider moving the modules during their operation, in order to improve the completion time of the biochemical application. The proposed heuristic has been evaluated using three real-life case studies and ten synthetic benchmarks.","PeriodicalId":136293,"journal":{"name":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips\",\"authors\":\"E. Maftei, P. Pop, J. Madsen\",\"doi\":\"10.1145/1629395.1629423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The \\\"digital\\\" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets, and hence they are highly reconfigurable and scalable. A digital biochip is composed of a two-dimensional array of cells, together with reservoirs for storing the samples and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on which operations are executed. During the execution of an operation, the virtual device can be reconfigured to occupy a different group of cells on the array. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determines the allocation, resource binding, scheduling and placement of the operations in the application. In our approach, we consider moving the modules during their operation, in order to improve the completion time of the biochemical application. The proposed heuristic has been evaluated using three real-life case studies and ten synthetic benchmarks.\",\"PeriodicalId\":136293,\"journal\":{\"name\":\"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629395.1629423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Compilers, Architecture, and Synthesis for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629395.1629423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips
Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The "digital" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets, and hence they are highly reconfigurable and scalable. A digital biochip is composed of a two-dimensional array of cells, together with reservoirs for storing the samples and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on which operations are executed. During the execution of an operation, the virtual device can be reconfigured to occupy a different group of cells on the array. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determines the allocation, resource binding, scheduling and placement of the operations in the application. In our approach, we consider moving the modules during their operation, in order to improve the completion time of the biochemical application. The proposed heuristic has been evaluated using three real-life case studies and ten synthetic benchmarks.