Virgile Fritsch, Benoit Da Mota, G. Varoquaux, V. Frouin, E. Loth, J. Poline, B. Thirion
{"title":"神经影像学遗传研究中稳健的群体水平推断","authors":"Virgile Fritsch, Benoit Da Mota, G. Varoquaux, V. Frouin, E. Loth, J. Poline, B. Thirion","doi":"10.1109/PRNI.2013.15","DOIUrl":null,"url":null,"abstract":"Gene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. Combining this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Group-Level Inference in Neuroimaging Genetic Studies\",\"authors\":\"Virgile Fritsch, Benoit Da Mota, G. Varoquaux, V. Frouin, E. Loth, J. Poline, B. Thirion\",\"doi\":\"10.1109/PRNI.2013.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. Combining this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Group-Level Inference in Neuroimaging Genetic Studies
Gene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. Combining this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods.