医学诊断数据的嵌入和聚类

David Kartchner, Tanner Christensen, J. Humpherys, Sean Wade
{"title":"医学诊断数据的嵌入和聚类","authors":"David Kartchner, Tanner Christensen, J. Humpherys, Sean Wade","doi":"10.1109/ICHI.2017.94","DOIUrl":null,"url":null,"abstract":"Identifying disease comorbidities and grouping medical diagnoses into disease incidents are two important problems in health care delivery and assessment. Using vector space embeddings produced using the Global Vectors (GloVe) algorithm, we are able to find useful vector representations of diagnosis codes that can identify related diagnoses and thus improve identification of related disease incidents.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Code2Vec: Embedding and Clustering Medical Diagnosis Data\",\"authors\":\"David Kartchner, Tanner Christensen, J. Humpherys, Sean Wade\",\"doi\":\"10.1109/ICHI.2017.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying disease comorbidities and grouping medical diagnoses into disease incidents are two important problems in health care delivery and assessment. Using vector space embeddings produced using the Global Vectors (GloVe) algorithm, we are able to find useful vector representations of diagnosis codes that can identify related diagnoses and thus improve identification of related disease incidents.\",\"PeriodicalId\":263611,\"journal\":{\"name\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Healthcare Informatics (ICHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHI.2017.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

确定疾病合并症和将医学诊断归类为疾病事件是卫生保健服务和评估中的两个重要问题。使用全局向量(GloVe)算法生成的向量空间嵌入,我们能够找到诊断代码的有用向量表示,可以识别相关诊断,从而提高相关疾病事件的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code2Vec: Embedding and Clustering Medical Diagnosis Data
Identifying disease comorbidities and grouping medical diagnoses into disease incidents are two important problems in health care delivery and assessment. Using vector space embeddings produced using the Global Vectors (GloVe) algorithm, we are able to find useful vector representations of diagnosis codes that can identify related diagnoses and thus improve identification of related disease incidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信