从g地图中提取无监督文本

Chandranath Adak
{"title":"从g地图中提取无监督文本","authors":"Chandranath Adak","doi":"10.1109/ICHCI-IEEE.2013.6887782","DOIUrl":null,"url":null,"abstract":"This paper represents an text extraction method from Google maps, GIS maps/images. Due to an unsupervised approach there is no requirement of any prior knowledge or training set about the textual and non-textual parts. Fuzzy C-Means clustering technique is used for image segmentation and Prewitt method is used to detect the edges. Connected component analysis and gridding technique enhance the correctness of the results. The proposed method reaches 98.5% accuracy level on the basis of experimental data sets.","PeriodicalId":419263,"journal":{"name":"2013 International Conference on Human Computer Interactions (ICHCI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised text extraction from G-maps\",\"authors\":\"Chandranath Adak\",\"doi\":\"10.1109/ICHCI-IEEE.2013.6887782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper represents an text extraction method from Google maps, GIS maps/images. Due to an unsupervised approach there is no requirement of any prior knowledge or training set about the textual and non-textual parts. Fuzzy C-Means clustering technique is used for image segmentation and Prewitt method is used to detect the edges. Connected component analysis and gridding technique enhance the correctness of the results. The proposed method reaches 98.5% accuracy level on the basis of experimental data sets.\",\"PeriodicalId\":419263,\"journal\":{\"name\":\"2013 International Conference on Human Computer Interactions (ICHCI)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Human Computer Interactions (ICHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHCI-IEEE.2013.6887782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Human Computer Interactions (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI-IEEE.2013.6887782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从Google地图、GIS地图/图像中提取文本的方法。由于无监督的方法,不需要任何关于文本和非文本部分的先验知识或训练集。图像分割采用模糊c均值聚类技术,边缘检测采用Prewitt方法。连通分量分析和网格化技术提高了结果的正确性。在实验数据集的基础上,该方法达到了98.5%的准确率水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised text extraction from G-maps
This paper represents an text extraction method from Google maps, GIS maps/images. Due to an unsupervised approach there is no requirement of any prior knowledge or training set about the textual and non-textual parts. Fuzzy C-Means clustering technique is used for image segmentation and Prewitt method is used to detect the edges. Connected component analysis and gridding technique enhance the correctness of the results. The proposed method reaches 98.5% accuracy level on the basis of experimental data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信