数据挖掘中的标准加性模型

Do-Thanh Sang, Dong-Min Woo, Dong-Chul Park
{"title":"数据挖掘中的标准加性模型","authors":"Do-Thanh Sang, Dong-Min Woo, Dong-Chul Park","doi":"10.1109/CYBERC.2010.16","DOIUrl":null,"url":null,"abstract":"The habitual purpose of data mining is prediction, one of the most direct real-world applications. There are many technologies available to data mining in literature and they achieved some results with reasonable accuracies. This paper designs and implements an advanced model based on fuzzy inference system, namely Standard Additive Model (SAM) for forecasting the output of any record given the input variables only from the database, the age of abalone in particular. SAM offers an optimum solution for the prediction and can be definitely an alternative approach for conventional models such as neural networks. The experimental result comparison to multi-layer perceptron neural network (MLPNN) is provided in same context.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard Additive Model in Data Mining\",\"authors\":\"Do-Thanh Sang, Dong-Min Woo, Dong-Chul Park\",\"doi\":\"10.1109/CYBERC.2010.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The habitual purpose of data mining is prediction, one of the most direct real-world applications. There are many technologies available to data mining in literature and they achieved some results with reasonable accuracies. This paper designs and implements an advanced model based on fuzzy inference system, namely Standard Additive Model (SAM) for forecasting the output of any record given the input variables only from the database, the age of abalone in particular. SAM offers an optimum solution for the prediction and can be definitely an alternative approach for conventional models such as neural networks. The experimental result comparison to multi-layer perceptron neural network (MLPNN) is provided in same context.\",\"PeriodicalId\":315132,\"journal\":{\"name\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2010.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘通常的目的是预测,这是最直接的现实应用之一。文献中有许多可用的数据挖掘技术,它们取得了一些具有合理精度的结果。本文设计并实现了一种基于模糊推理系统的高级模型,即标准可加模型(Standard Additive model, SAM),用于仅从数据库中给定输入变量(特别是鲍鱼的年龄)来预测任何记录的输出。SAM为预测提供了一个最佳的解决方案,绝对可以作为传统模型(如神经网络)的替代方法。实验结果与多层感知器神经网络(MLPNN)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Standard Additive Model in Data Mining
The habitual purpose of data mining is prediction, one of the most direct real-world applications. There are many technologies available to data mining in literature and they achieved some results with reasonable accuracies. This paper designs and implements an advanced model based on fuzzy inference system, namely Standard Additive Model (SAM) for forecasting the output of any record given the input variables only from the database, the age of abalone in particular. SAM offers an optimum solution for the prediction and can be definitely an alternative approach for conventional models such as neural networks. The experimental result comparison to multi-layer perceptron neural network (MLPNN) is provided in same context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信