Pedro J. Freire, Daniel Abode, J. Prilepsky, S. Turitsyn
{"title":"相干光传输系统中神经网络均衡器的功率和调制格式迁移学习","authors":"Pedro J. Freire, Daniel Abode, J. Prilepsky, S. Turitsyn","doi":"10.1364/sppcom.2021.spm5c.6","DOIUrl":null,"url":null,"abstract":"Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.","PeriodicalId":117290,"journal":{"name":"OSA Advanced Photonics Congress 2021","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power and Modulation Format Transfer Learning for Neural Network Equalizers in Coherent Optical Transmission Systems\",\"authors\":\"Pedro J. Freire, Daniel Abode, J. Prilepsky, S. Turitsyn\",\"doi\":\"10.1364/sppcom.2021.spm5c.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.\",\"PeriodicalId\":117290,\"journal\":{\"name\":\"OSA Advanced Photonics Congress 2021\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OSA Advanced Photonics Congress 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/sppcom.2021.spm5c.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OSA Advanced Photonics Congress 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/sppcom.2021.spm5c.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power and Modulation Format Transfer Learning for Neural Network Equalizers in Coherent Optical Transmission Systems
Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.