用模糊方法识别信号趋势

Xin Wang, T. Wei, J. Reifman, L. Tsoukalas
{"title":"用模糊方法识别信号趋势","authors":"Xin Wang, T. Wei, J. Reifman, L. Tsoukalas","doi":"10.1109/TAI.1999.809813","DOIUrl":null,"url":null,"abstract":"A fuzzy logic-based methodology for online signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of online signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Signal trend identification with fuzzy methods\",\"authors\":\"Xin Wang, T. Wei, J. Reifman, L. Tsoukalas\",\"doi\":\"10.1109/TAI.1999.809813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy logic-based methodology for online signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of online signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种基于模糊逻辑的在线信号趋势识别方法。虽然信号趋势识别由于噪声的存在而变得复杂,但模糊逻辑可以帮助捕获在线信号的重要特征,并将输入的电厂信号分为增加、减少和稳态趋势三类。为了验证该方法,开发了名为PROTREN的代码,并使用植物数据进行了测试。结果表明,该代码能够准确地检测瞬态,可靠地识别趋势,并且不会将稳态信号误认为瞬态信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal trend identification with fuzzy methods
A fuzzy logic-based methodology for online signal trend identification is introduced. Although signal trend identification is complicated by the presence of noise, fuzzy logic can help capture important features of online signals and classify incoming power plant signals into increasing, decreasing and steady-state trend categories. In order to verify the methodology, a code named PROTREN is developed and tested using plant data. The results indicate that the code is capable of detecting transients accurately, identifying trends reliably, and not misinterpreting a steady-state signal as a transient one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信