{"title":"增材制造金属和生物医学设备的腐蚀测试","authors":"D. Kemény, D. Károly","doi":"10.2478/amt-2018-0028","DOIUrl":null,"url":null,"abstract":"Abstract Additive manufacturing (AM) is becoming increasingly important, making it possible to produce a product in a short time, to specific individual requirements, and even in the presence of the customer. This research is related to direct metal laser sintering of additive manufacturing. This new technology is increasingly being used in more sectors, for example in biomedical industry, where a damaged product can potentially endanger human life. Corrosion tests were carried out during our research. Cyclic voltammetry curves and corrosion rates were determined with a potentiostat. Two typical biocompatible implant materials were compared, a cobalt chromium alloy (powder metallurgy) and a titanium alloy (3D printed). The results will help in specifying the corrosion properties of additively manufactured materials.","PeriodicalId":426392,"journal":{"name":"Acta Materialia Transilvanica","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Testing of Additively Manufactured Metals and Biomedical Devices\",\"authors\":\"D. Kemény, D. Károly\",\"doi\":\"10.2478/amt-2018-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Additive manufacturing (AM) is becoming increasingly important, making it possible to produce a product in a short time, to specific individual requirements, and even in the presence of the customer. This research is related to direct metal laser sintering of additive manufacturing. This new technology is increasingly being used in more sectors, for example in biomedical industry, where a damaged product can potentially endanger human life. Corrosion tests were carried out during our research. Cyclic voltammetry curves and corrosion rates were determined with a potentiostat. Two typical biocompatible implant materials were compared, a cobalt chromium alloy (powder metallurgy) and a titanium alloy (3D printed). The results will help in specifying the corrosion properties of additively manufactured materials.\",\"PeriodicalId\":426392,\"journal\":{\"name\":\"Acta Materialia Transilvanica\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia Transilvanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amt-2018-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia Transilvanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amt-2018-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Corrosion Testing of Additively Manufactured Metals and Biomedical Devices
Abstract Additive manufacturing (AM) is becoming increasingly important, making it possible to produce a product in a short time, to specific individual requirements, and even in the presence of the customer. This research is related to direct metal laser sintering of additive manufacturing. This new technology is increasingly being used in more sectors, for example in biomedical industry, where a damaged product can potentially endanger human life. Corrosion tests were carried out during our research. Cyclic voltammetry curves and corrosion rates were determined with a potentiostat. Two typical biocompatible implant materials were compared, a cobalt chromium alloy (powder metallurgy) and a titanium alloy (3D printed). The results will help in specifying the corrosion properties of additively manufactured materials.