基于CLCS特征提取的动态手势预测系统

Nestor T. M. Junior, Pablo V. A. Barros, Bruno José Torres Fernandes, B. Bezerra, Sergio M. M. Fernandes
{"title":"基于CLCS特征提取的动态手势预测系统","authors":"Nestor T. M. Junior, Pablo V. A. Barros, Bruno José Torres Fernandes, B. Bezerra, Sergio M. M. Fernandes","doi":"10.1109/BRICS-CCI-CBIC.2013.89","DOIUrl":null,"url":null,"abstract":"Real-time recognition of dynamic gestures is a problem for most of the applications nowadays. The prediction approach can be used as a solution for this. This approach uses an incomplete gesture input and it tries to predict which gesture the given input represents. This paper presents the application of the dynamic gesture feature extraction technique called Convexity Local Contour Sequence (CLCS) as the extractor for the prediction task. Two predictor systems are used to achieve this task and results are compared and discussed in this paper.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Dynamic Gesture Prediction System Based on the CLCS Feature Extraction\",\"authors\":\"Nestor T. M. Junior, Pablo V. A. Barros, Bruno José Torres Fernandes, B. Bezerra, Sergio M. M. Fernandes\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time recognition of dynamic gestures is a problem for most of the applications nowadays. The prediction approach can be used as a solution for this. This approach uses an incomplete gesture input and it tries to predict which gesture the given input represents. This paper presents the application of the dynamic gesture feature extraction technique called Convexity Local Contour Sequence (CLCS) as the extractor for the prediction task. Two predictor systems are used to achieve this task and results are compared and discussed in this paper.\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动态手势的实时识别是目前大多数应用的难题。预测方法可以作为一种解决方案。这种方法使用不完整的手势输入,并尝试预测给定输入代表的手势。本文提出了一种动态手势特征提取技术——凸局部轮廓序列(CLCS)作为预测任务的提取器。本文使用了两种预测系统来实现这一任务,并对结果进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Gesture Prediction System Based on the CLCS Feature Extraction
Real-time recognition of dynamic gestures is a problem for most of the applications nowadays. The prediction approach can be used as a solution for this. This approach uses an incomplete gesture input and it tries to predict which gesture the given input represents. This paper presents the application of the dynamic gesture feature extraction technique called Convexity Local Contour Sequence (CLCS) as the extractor for the prediction task. Two predictor systems are used to achieve this task and results are compared and discussed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信