地面冲击和危险缓解对更安全的无人机飞行响应

A. Poissant, L. Castano, Huan Xu
{"title":"地面冲击和危险缓解对更安全的无人机飞行响应","authors":"A. Poissant, L. Castano, Huan Xu","doi":"10.1109/ICUAS.2018.8453328","DOIUrl":null,"url":null,"abstract":"As Unmanned Aerial Vehicles (UAVs) become more commonplace, there is a growing need for safer flight control software that allows for the UAV to understand and autonomously react to various flight anomalies. Decision-making software must allow the aircraft to perform tasks such as detect and avoid, as well as respond to critical failures mid-flight. This paper develops a ground impact and hazard mitigation (GIHM) module that integrates the following: (1) consideration of flight failure modes, (2) generation of feasible ground impact footprints based on glide equations, (3) selection of safest response ground impact sites based on a high resolution LandScan USA population dataset, and (4) controlled descent to selected site. For a sample population distribution, integration of GIHM with standard UAV flight software shows a reduction of 20.396 casualties per 100,000 flight hours compared to the flight software without GIHM. A 96% reduction in fatalities per flight hour resulted from incorporating this module, which brings UAVs closer to being safe enough to be integrated into the National Airspace System (NAS).","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ground Impact and Hazard Mitigation for Safer UAV Flight Response\",\"authors\":\"A. Poissant, L. Castano, Huan Xu\",\"doi\":\"10.1109/ICUAS.2018.8453328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Unmanned Aerial Vehicles (UAVs) become more commonplace, there is a growing need for safer flight control software that allows for the UAV to understand and autonomously react to various flight anomalies. Decision-making software must allow the aircraft to perform tasks such as detect and avoid, as well as respond to critical failures mid-flight. This paper develops a ground impact and hazard mitigation (GIHM) module that integrates the following: (1) consideration of flight failure modes, (2) generation of feasible ground impact footprints based on glide equations, (3) selection of safest response ground impact sites based on a high resolution LandScan USA population dataset, and (4) controlled descent to selected site. For a sample population distribution, integration of GIHM with standard UAV flight software shows a reduction of 20.396 casualties per 100,000 flight hours compared to the flight software without GIHM. A 96% reduction in fatalities per flight hour resulted from incorporating this module, which brings UAVs closer to being safe enough to be integrated into the National Airspace System (NAS).\",\"PeriodicalId\":246293,\"journal\":{\"name\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2018.8453328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着无人驾驶飞行器(UAV)变得越来越普遍,越来越需要更安全的飞行控制软件,使无人机能够理解并自主应对各种飞行异常。决策软件必须允许飞机执行诸如探测和避免等任务,以及对飞行中的关键故障做出反应。本文开发了一个地面撞击和危害缓解(GIHM)模块,该模块集成了以下内容:(1)考虑飞行故障模式,(2)基于滑翔方程生成可行的地面撞击足迹,(3)基于高分辨率LandScan USA人口数据集选择最安全的响应地面撞击地点,以及(4)控制下降到选定地点。对于样本总体分布,与没有GIHM的飞行软件相比,GIHM与标准无人机飞行软件的集成显示每10万飞行小时减少20.396人的伤亡。由于采用了该模块,每飞行小时的死亡率降低了96%,这使得无人机更接近安全,可以集成到国家空域系统(NAS)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground Impact and Hazard Mitigation for Safer UAV Flight Response
As Unmanned Aerial Vehicles (UAVs) become more commonplace, there is a growing need for safer flight control software that allows for the UAV to understand and autonomously react to various flight anomalies. Decision-making software must allow the aircraft to perform tasks such as detect and avoid, as well as respond to critical failures mid-flight. This paper develops a ground impact and hazard mitigation (GIHM) module that integrates the following: (1) consideration of flight failure modes, (2) generation of feasible ground impact footprints based on glide equations, (3) selection of safest response ground impact sites based on a high resolution LandScan USA population dataset, and (4) controlled descent to selected site. For a sample population distribution, integration of GIHM with standard UAV flight software shows a reduction of 20.396 casualties per 100,000 flight hours compared to the flight software without GIHM. A 96% reduction in fatalities per flight hour resulted from incorporating this module, which brings UAVs closer to being safe enough to be integrated into the National Airspace System (NAS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信