{"title":"仿射连接","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0010","DOIUrl":null,"url":null,"abstract":"The connection and the covariant derivative are treated. Connection coefficients are introduced in their role of expressing the change in the coordinate basis vectors between neighbouring points. The covariant derivative of a vector is then defined. Next we relate the connection to the metric, and obtain the Levi-Civita connection. The logic concerning what is defined and what is derived is explained carefuly. The notion of a derivative along a curve is defined. The emphasis through is on clarity and avoiding confusions arising from the plethora of concepts and symbols.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The affine connection\",\"authors\":\"A. Steane\",\"doi\":\"10.1093/oso/9780192895646.003.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The connection and the covariant derivative are treated. Connection coefficients are introduced in their role of expressing the change in the coordinate basis vectors between neighbouring points. The covariant derivative of a vector is then defined. Next we relate the connection to the metric, and obtain the Levi-Civita connection. The logic concerning what is defined and what is derived is explained carefuly. The notion of a derivative along a curve is defined. The emphasis through is on clarity and avoiding confusions arising from the plethora of concepts and symbols.\",\"PeriodicalId\":365636,\"journal\":{\"name\":\"Relativity Made Relatively Easy Volume 2\",\"volume\":\"240 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Relativity Made Relatively Easy Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192895646.003.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The connection and the covariant derivative are treated. Connection coefficients are introduced in their role of expressing the change in the coordinate basis vectors between neighbouring points. The covariant derivative of a vector is then defined. Next we relate the connection to the metric, and obtain the Levi-Civita connection. The logic concerning what is defined and what is derived is explained carefuly. The notion of a derivative along a curve is defined. The emphasis through is on clarity and avoiding confusions arising from the plethora of concepts and symbols.