基于进化平行梯度搜索的Takagi-Sugeno (TS)模糊模型辨识

Zhao Zhongyu, W. Xie, H. Hong
{"title":"基于进化平行梯度搜索的Takagi-Sugeno (TS)模糊模型辨识","authors":"Zhao Zhongyu, W. Xie, H. Hong","doi":"10.1109/NAFIPS.2008.4531203","DOIUrl":null,"url":null,"abstract":"In this paper the modeling of nonlinear system with TS fuzzy model is discussed. The identification of TS fuzzy model is first posed as an optimization problem and a new hybrid optimization algorithm- referred to as evolutionary parallel gradient search (EPGS) is applied to find the optimal values of the parameters in the fuzzy model. The main feature of EPGS is its ability to deal with the local minima problem in global optimization. By using the gradient information of cost function, EPGS combines gradient-based algorithm and evolutionary algorithm (EA) in an innovative way such that EA is used to keep the best searches at every step in the optimization process and the gradient descent method is used to update these best searches. The application of EPGS in the parameter estimation problem of TS fuzzy models shows excellent performance in terms of modeling accuracy.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of Takagi-Sugeno (TS) fuzzy model with Evolutionary Parallel Gradient Search\",\"authors\":\"Zhao Zhongyu, W. Xie, H. Hong\",\"doi\":\"10.1109/NAFIPS.2008.4531203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the modeling of nonlinear system with TS fuzzy model is discussed. The identification of TS fuzzy model is first posed as an optimization problem and a new hybrid optimization algorithm- referred to as evolutionary parallel gradient search (EPGS) is applied to find the optimal values of the parameters in the fuzzy model. The main feature of EPGS is its ability to deal with the local minima problem in global optimization. By using the gradient information of cost function, EPGS combines gradient-based algorithm and evolutionary algorithm (EA) in an innovative way such that EA is used to keep the best searches at every step in the optimization process and the gradient descent method is used to update these best searches. The application of EPGS in the parameter estimation problem of TS fuzzy models shows excellent performance in terms of modeling accuracy.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了用TS模糊模型对非线性系统进行建模。首先将TS模糊模型的辨识作为一个优化问题,采用一种新的混合优化算法——进化并行梯度搜索(EPGS)来寻找模糊模型中参数的最优值。EPGS的主要特点是能够处理全局优化中的局部极小问题。EPGS利用代价函数的梯度信息,创新地将基于梯度的算法和进化算法(EA)结合起来,利用EA在优化过程的每一步保持最优搜索,并利用梯度下降法更新这些最优搜索。EPGS在TS模糊模型参数估计问题中的应用在建模精度方面表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Takagi-Sugeno (TS) fuzzy model with Evolutionary Parallel Gradient Search
In this paper the modeling of nonlinear system with TS fuzzy model is discussed. The identification of TS fuzzy model is first posed as an optimization problem and a new hybrid optimization algorithm- referred to as evolutionary parallel gradient search (EPGS) is applied to find the optimal values of the parameters in the fuzzy model. The main feature of EPGS is its ability to deal with the local minima problem in global optimization. By using the gradient information of cost function, EPGS combines gradient-based algorithm and evolutionary algorithm (EA) in an innovative way such that EA is used to keep the best searches at every step in the optimization process and the gradient descent method is used to update these best searches. The application of EPGS in the parameter estimation problem of TS fuzzy models shows excellent performance in terms of modeling accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信