基于多边合成孔径无线定位的机器人刀具中心点三维精确定位方法

Gang Li, M. Vossiek
{"title":"基于多边合成孔径无线定位的机器人刀具中心点三维精确定位方法","authors":"Gang Li, M. Vossiek","doi":"10.1109/WISNET.2011.5725017","DOIUrl":null,"url":null,"abstract":"In this paper, a novel multilateral synthetic aperture secondary radar concept and its application for precise 3D localization of a robot tool center point (TCP) are introduced. A backscatter transponder is attached to the TCP of a robot. Spatially distributed FMCW secondary radar units pick up the backscattered phase coherent transponder signals. Based on assisting relative sensors, a synthetic aperture is created with the TCP. The developed multilateral inverse synthetic aperture reconstruction algorithm then determines a probability density function (PDF) of the spatial transponder position. By simulations and experimental results using a 5.8 GHz system with 140 MHz bandwidth it is shown, that 3D localization precision in the mm range can be achieved with the novel wireless local positioning concept even with narrowband radar systems in dense multipath environments. Heretofore, accuracies of this magnitude were only attainable with ultrawideband (UWB) systems utilizing a ten times wider bandwidth. It is shown, that the multilateral synthetic aperture locating system has the potential for a quantum leap in precise 3D wireless local positioning.","PeriodicalId":128026,"journal":{"name":"2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A multilateral synthetic aperture wireless positioning approach to precise 3D localization of a robot tool center point\",\"authors\":\"Gang Li, M. Vossiek\",\"doi\":\"10.1109/WISNET.2011.5725017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel multilateral synthetic aperture secondary radar concept and its application for precise 3D localization of a robot tool center point (TCP) are introduced. A backscatter transponder is attached to the TCP of a robot. Spatially distributed FMCW secondary radar units pick up the backscattered phase coherent transponder signals. Based on assisting relative sensors, a synthetic aperture is created with the TCP. The developed multilateral inverse synthetic aperture reconstruction algorithm then determines a probability density function (PDF) of the spatial transponder position. By simulations and experimental results using a 5.8 GHz system with 140 MHz bandwidth it is shown, that 3D localization precision in the mm range can be achieved with the novel wireless local positioning concept even with narrowband radar systems in dense multipath environments. Heretofore, accuracies of this magnitude were only attainable with ultrawideband (UWB) systems utilizing a ten times wider bandwidth. It is shown, that the multilateral synthetic aperture locating system has the potential for a quantum leap in precise 3D wireless local positioning.\",\"PeriodicalId\":128026,\"journal\":{\"name\":\"2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISNET.2011.5725017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISNET.2011.5725017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种新的多边合成孔径二次雷达概念及其在机器人刀具中心点三维精确定位中的应用。机器人的TCP连接有一个反向散射应答器。空间分布的FMCW二次雷达单元接收后向散射相参应答信号。在辅助相关传感器的基础上,利用TCP建立了一个合成孔径。然后,开发的多边逆合成孔径重建算法确定了空间应答器位置的概率密度函数(PDF)。通过在带宽为140 MHz的5.8 GHz系统上的仿真和实验结果表明,即使在密集多径环境下的窄带雷达系统中,采用这种新颖的无线局部定位概念也可以实现毫米范围内的三维定位精度。到目前为止,这种量级的精度只能通过使用十倍宽带宽的超宽带(UWB)系统实现。结果表明,多边合成孔径定位系统在精确三维无线局部定位方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multilateral synthetic aperture wireless positioning approach to precise 3D localization of a robot tool center point
In this paper, a novel multilateral synthetic aperture secondary radar concept and its application for precise 3D localization of a robot tool center point (TCP) are introduced. A backscatter transponder is attached to the TCP of a robot. Spatially distributed FMCW secondary radar units pick up the backscattered phase coherent transponder signals. Based on assisting relative sensors, a synthetic aperture is created with the TCP. The developed multilateral inverse synthetic aperture reconstruction algorithm then determines a probability density function (PDF) of the spatial transponder position. By simulations and experimental results using a 5.8 GHz system with 140 MHz bandwidth it is shown, that 3D localization precision in the mm range can be achieved with the novel wireless local positioning concept even with narrowband radar systems in dense multipath environments. Heretofore, accuracies of this magnitude were only attainable with ultrawideband (UWB) systems utilizing a ten times wider bandwidth. It is shown, that the multilateral synthetic aperture locating system has the potential for a quantum leap in precise 3D wireless local positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信