小波和DCT域语音信号的乘性水印检测

R. Eslami, J. Deller, H. Radha
{"title":"小波和DCT域语音信号的乘性水印检测","authors":"R. Eslami, J. Deller, H. Radha","doi":"10.1109/ICME.2006.262793","DOIUrl":null,"url":null,"abstract":"Blind multiplicative watermarking schemes for speech signals using wavelets and discrete cosine transform are presented. Watermarked signals are modeled using a generalized Gaussian distribution (GGD) and Cauchy probability model. Detectors are developed employing generalized likelihood ratio test (GLRT) and locally most powerful (LMP) approach. The LMP scheme is used for the Cauchy distribution, while the GLRT estimates the gain factor as an unknown parameter in the GGD model. The detectors are tested using Monte Carlo simulation and results show the superiority of the proposed LMP/Cauchy detector in some experiments","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Detection of Multiplicative Watermarks for Speech Signals in the Wavelet and DCT Domains\",\"authors\":\"R. Eslami, J. Deller, H. Radha\",\"doi\":\"10.1109/ICME.2006.262793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind multiplicative watermarking schemes for speech signals using wavelets and discrete cosine transform are presented. Watermarked signals are modeled using a generalized Gaussian distribution (GGD) and Cauchy probability model. Detectors are developed employing generalized likelihood ratio test (GLRT) and locally most powerful (LMP) approach. The LMP scheme is used for the Cauchy distribution, while the GLRT estimates the gain factor as an unknown parameter in the GGD model. The detectors are tested using Monte Carlo simulation and results show the superiority of the proposed LMP/Cauchy detector in some experiments\",\"PeriodicalId\":339258,\"journal\":{\"name\":\"2006 IEEE International Conference on Multimedia and Expo\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2006.262793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了基于小波和离散余弦变换的语音信号盲乘水印算法。采用广义高斯分布和柯西概率模型对水印信号进行建模。采用广义似然比检验(GLRT)和局部最强大(LMP)方法开发了检测器。LMP方案用于柯西分布,而GLRT估计增益因子作为GGD模型中的未知参数。利用蒙特卡罗模拟对探测器进行了测试,实验结果表明了所提出的LMP/Cauchy探测器的优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Detection of Multiplicative Watermarks for Speech Signals in the Wavelet and DCT Domains
Blind multiplicative watermarking schemes for speech signals using wavelets and discrete cosine transform are presented. Watermarked signals are modeled using a generalized Gaussian distribution (GGD) and Cauchy probability model. Detectors are developed employing generalized likelihood ratio test (GLRT) and locally most powerful (LMP) approach. The LMP scheme is used for the Cauchy distribution, while the GLRT estimates the gain factor as an unknown parameter in the GGD model. The detectors are tested using Monte Carlo simulation and results show the superiority of the proposed LMP/Cauchy detector in some experiments
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信