基于面部表情的情绪分类器

Alejandro Benavides, Gabriel Rubio, Gabriela Barrantes, Juan José Vargas, Adrián Lara, Luis Quesada
{"title":"基于面部表情的情绪分类器","authors":"Alejandro Benavides, Gabriel Rubio, Gabriela Barrantes, Juan José Vargas, Adrián Lara, Luis Quesada","doi":"10.1109/JoCICI54528.2021.9794338","DOIUrl":null,"url":null,"abstract":"Emotion recognition is important in the context of smart buildings and IoT, because it allows the environment to have a better notion of the mood of the humans who are present. With a view to developing such projects, in this article we analyze the performance of an emotion classifier that uses a convolutional neural network. Specifically, we focus on analyzing the impact of the epochs and batch size hyperparameters. To do this, we propose an experimental design with the following hypothesis: \"The number of epochs that the model trains and the size of the batch given by iteration in each epoch influence the accuracy of an emotion classifier built from networks. convolutional neurons using the VGG16 architecture\".","PeriodicalId":339143,"journal":{"name":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotions Classifier based on Facial Expressions\",\"authors\":\"Alejandro Benavides, Gabriel Rubio, Gabriela Barrantes, Juan José Vargas, Adrián Lara, Luis Quesada\",\"doi\":\"10.1109/JoCICI54528.2021.9794338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition is important in the context of smart buildings and IoT, because it allows the environment to have a better notion of the mood of the humans who are present. With a view to developing such projects, in this article we analyze the performance of an emotion classifier that uses a convolutional neural network. Specifically, we focus on analyzing the impact of the epochs and batch size hyperparameters. To do this, we propose an experimental design with the following hypothesis: \\\"The number of epochs that the model trains and the size of the batch given by iteration in each epoch influence the accuracy of an emotion classifier built from networks. convolutional neurons using the VGG16 architecture\\\".\",\"PeriodicalId\":339143,\"journal\":{\"name\":\"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JoCICI54528.2021.9794338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE V Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JoCICI54528.2021.9794338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在智能建筑和物联网的背景下,情绪识别很重要,因为它可以让环境更好地了解在场人类的情绪。为了开发这样的项目,在本文中,我们分析了使用卷积神经网络的情感分类器的性能。具体来说,我们重点分析了epoch和batch大小超参数的影响。为了做到这一点,我们提出了一个实验设计,假设如下:“模型训练的时代数量和每个时代迭代给出的批处理大小影响从网络构建的情感分类器的准确性。使用VGG16架构的卷积神经元”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotions Classifier based on Facial Expressions
Emotion recognition is important in the context of smart buildings and IoT, because it allows the environment to have a better notion of the mood of the humans who are present. With a view to developing such projects, in this article we analyze the performance of an emotion classifier that uses a convolutional neural network. Specifically, we focus on analyzing the impact of the epochs and batch size hyperparameters. To do this, we propose an experimental design with the following hypothesis: "The number of epochs that the model trains and the size of the batch given by iteration in each epoch influence the accuracy of an emotion classifier built from networks. convolutional neurons using the VGG16 architecture".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信