伪Android反恶意软件检测的新数据集

Saeed Seraj, Michalis Pavlidis, Nikolaos Polatidis
{"title":"伪Android反恶意软件检测的新数据集","authors":"Saeed Seraj, Michalis Pavlidis, Nikolaos Polatidis","doi":"10.1145/3405962.3405980","DOIUrl":null,"url":null,"abstract":"Today in the world people are able to get all types of Android applications (apps) from the app store or various sources over the Internet. A large number of apps is being produced daily, some of which are infected with malware. Thus, the use of anti-malware identification tools is essential. At the same time, a number of attackers who exploit a number of anti-malwares have been doing obtaining information from mobile phones in various ways, such as decompiling or infecting anti-malware. Therefore, in this paper, we developed a classification dataset from collected anti-malware data looking for fraudulent anti-malware products. Additionally, we applied various machine learning algorithms and we propose a combination of algorithms which provides high accuracy over various evaluation tests, showing that our approach is both practical and effective.","PeriodicalId":247414,"journal":{"name":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Dataset for Fake Android Anti-Malware Detection\",\"authors\":\"Saeed Seraj, Michalis Pavlidis, Nikolaos Polatidis\",\"doi\":\"10.1145/3405962.3405980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today in the world people are able to get all types of Android applications (apps) from the app store or various sources over the Internet. A large number of apps is being produced daily, some of which are infected with malware. Thus, the use of anti-malware identification tools is essential. At the same time, a number of attackers who exploit a number of anti-malwares have been doing obtaining information from mobile phones in various ways, such as decompiling or infecting anti-malware. Therefore, in this paper, we developed a classification dataset from collected anti-malware data looking for fraudulent anti-malware products. Additionally, we applied various machine learning algorithms and we propose a combination of algorithms which provides high accuracy over various evaluation tests, showing that our approach is both practical and effective.\",\"PeriodicalId\":247414,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405962.3405980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405962.3405980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天在世界上,人们可以从应用程序商店或互联网上的各种来源获得所有类型的Android应用程序(应用程序)。每天都有大量的应用程序诞生,其中一些应用程序感染了恶意软件。因此,使用反恶意软件识别工具是必不可少的。与此同时,一些利用反恶意软件的攻击者一直在以各种方式从手机中获取信息,例如反编译或感染反恶意软件。因此,在本文中,我们从收集的反恶意软件数据中开发了一个分类数据集,以寻找欺诈性的反恶意软件产品。此外,我们应用了各种机器学习算法,并提出了一种算法组合,在各种评估测试中提供高精度,表明我们的方法既实用又有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Dataset for Fake Android Anti-Malware Detection
Today in the world people are able to get all types of Android applications (apps) from the app store or various sources over the Internet. A large number of apps is being produced daily, some of which are infected with malware. Thus, the use of anti-malware identification tools is essential. At the same time, a number of attackers who exploit a number of anti-malwares have been doing obtaining information from mobile phones in various ways, such as decompiling or infecting anti-malware. Therefore, in this paper, we developed a classification dataset from collected anti-malware data looking for fraudulent anti-malware products. Additionally, we applied various machine learning algorithms and we propose a combination of algorithms which provides high accuracy over various evaluation tests, showing that our approach is both practical and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信