基于VAE-GAN的语义保持哈希编码

Guoqing Jin, Dongming Zhang, Feng Dai, Junbo Guo, Yike Ma, Yongdong Zhang
{"title":"基于VAE-GAN的语义保持哈希编码","authors":"Guoqing Jin, Dongming Zhang, Feng Dai, Junbo Guo, Yike Ma, Yongdong Zhang","doi":"10.1109/ICIP.2018.8451744","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel framework for fast image retrieval. The proposed framework combines variational autoencoder with generative adversarial network to generate content preserving images for learning-based hashing. By accepting real image and systhesized image in a pairwise form, a semantic perserving binary mapping model is learned using pairwise ranking loss under an adversarial generative process. Extensive experiments on several benchmark datasets demonstrate that the proposed method shows substantial improvement over the state-of-the-art hashing methods.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Preserving Hash Coding Through VAE-GAN\",\"authors\":\"Guoqing Jin, Dongming Zhang, Feng Dai, Junbo Guo, Yike Ma, Yongdong Zhang\",\"doi\":\"10.1109/ICIP.2018.8451744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel framework for fast image retrieval. The proposed framework combines variational autoencoder with generative adversarial network to generate content preserving images for learning-based hashing. By accepting real image and systhesized image in a pairwise form, a semantic perserving binary mapping model is learned using pairwise ranking loss under an adversarial generative process. Extensive experiments on several benchmark datasets demonstrate that the proposed method shows substantial improvement over the state-of-the-art hashing methods.\",\"PeriodicalId\":147245,\"journal\":{\"name\":\"International Conference on Information Photonics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2018.8451744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2018.8451744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的快速图像检索框架。该框架将变分自编码器与生成式对抗网络相结合,为基于学习的哈希生成内容保留图像。在对抗性生成过程中,以成对形式接受真实图像和合成图像,利用成对排序损失学习语义保留二值映射模型。在几个基准数据集上进行的大量实验表明,所提出的方法比最先进的哈希方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Preserving Hash Coding Through VAE-GAN
This paper proposes a novel framework for fast image retrieval. The proposed framework combines variational autoencoder with generative adversarial network to generate content preserving images for learning-based hashing. By accepting real image and systhesized image in a pairwise form, a semantic perserving binary mapping model is learned using pairwise ranking loss under an adversarial generative process. Extensive experiments on several benchmark datasets demonstrate that the proposed method shows substantial improvement over the state-of-the-art hashing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信