个性化图像美学评价的联邦学习

Zhiwei Xiong, Han Yu, Zhiqi Shen
{"title":"个性化图像美学评价的联邦学习","authors":"Zhiwei Xiong, Han Yu, Zhiqi Shen","doi":"10.1109/ICME55011.2023.00065","DOIUrl":null,"url":null,"abstract":"Image aesthetics assessment (IAA) evaluates the generic aesthetic quality of images. Due to the subjectivity of IAA, personalized IAA (PIAA) is essential to offering dedicated image retrieval, editing, and recommendation services to individual users. However, existing PIAA approaches are trained under the centralized machine learning paradigm, which exposes sensitive image and rating data. To enhance PIAA in a privacy-preserving manner, we propose the first-of-its-kind Federated Learning-empowered Personalized Image Aesthetics Assessment (FedPIAA) approach with a simple yet effective model structure to capture image aesthetic patterns and personalized user aesthetic preferences. Extensive experimental comparison against eight baselines using the real-world dataset FLICKER-AES demonstrates that FedPIAA outperforms FedAvg by 1.56% under the small support set and by 4.86% under the large support set in terms of Spearman rank-order correlation coefficient between predicted and ground-truth personalized aesthetics scores, while achieving comparable performance with the best non-FL centralized PIAA approaches.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Federated Learning for Personalized Image Aesthetics Assessment\",\"authors\":\"Zhiwei Xiong, Han Yu, Zhiqi Shen\",\"doi\":\"10.1109/ICME55011.2023.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image aesthetics assessment (IAA) evaluates the generic aesthetic quality of images. Due to the subjectivity of IAA, personalized IAA (PIAA) is essential to offering dedicated image retrieval, editing, and recommendation services to individual users. However, existing PIAA approaches are trained under the centralized machine learning paradigm, which exposes sensitive image and rating data. To enhance PIAA in a privacy-preserving manner, we propose the first-of-its-kind Federated Learning-empowered Personalized Image Aesthetics Assessment (FedPIAA) approach with a simple yet effective model structure to capture image aesthetic patterns and personalized user aesthetic preferences. Extensive experimental comparison against eight baselines using the real-world dataset FLICKER-AES demonstrates that FedPIAA outperforms FedAvg by 1.56% under the small support set and by 4.86% under the large support set in terms of Spearman rank-order correlation coefficient between predicted and ground-truth personalized aesthetics scores, while achieving comparable performance with the best non-FL centralized PIAA approaches.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像美学评价(IAA)是对图像的一般审美质量进行评价。由于IAA的主观性,个性化IAA (PIAA)对于向个人用户提供专门的图像检索、编辑和推荐服务至关重要。然而,现有的PIAA方法是在集中式机器学习范式下训练的,这暴露了敏感的图像和评级数据。为了以保护隐私的方式增强PIAA,我们提出了首个基于联邦学习的个性化图像美学评估(FedPIAA)方法,该方法采用简单而有效的模型结构来捕获图像美学模式和个性化用户审美偏好。使用真实数据集FLICKER-AES与8个基线进行了广泛的实验比较,结果表明,在预测和真实个性化美学评分之间的Spearman秩-阶相关系数方面,FedPIAA在小支持集下优于fedag 1.56%,在大支持集下优于fedag 4.86%,同时与最佳非fl集中式PIAA方法实现了相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated Learning for Personalized Image Aesthetics Assessment
Image aesthetics assessment (IAA) evaluates the generic aesthetic quality of images. Due to the subjectivity of IAA, personalized IAA (PIAA) is essential to offering dedicated image retrieval, editing, and recommendation services to individual users. However, existing PIAA approaches are trained under the centralized machine learning paradigm, which exposes sensitive image and rating data. To enhance PIAA in a privacy-preserving manner, we propose the first-of-its-kind Federated Learning-empowered Personalized Image Aesthetics Assessment (FedPIAA) approach with a simple yet effective model structure to capture image aesthetic patterns and personalized user aesthetic preferences. Extensive experimental comparison against eight baselines using the real-world dataset FLICKER-AES demonstrates that FedPIAA outperforms FedAvg by 1.56% under the small support set and by 4.86% under the large support set in terms of Spearman rank-order correlation coefficient between predicted and ground-truth personalized aesthetics scores, while achieving comparable performance with the best non-FL centralized PIAA approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信