{"title":"基于蚁群系统的单机调度方法:加权延迟调度问题","authors":"A. Madureira, D. Falcao, I. Pereira","doi":"10.1109/NaBIC.2012.6402244","DOIUrl":null,"url":null,"abstract":"The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ant Colony System based approach to single machine scheduling problems: Weighted tardiness scheduling problem\",\"authors\":\"A. Madureira, D. Falcao, I. Pereira\",\"doi\":\"10.1109/NaBIC.2012.6402244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ant Colony System based approach to single machine scheduling problems: Weighted tardiness scheduling problem
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.