使用信念传播的数据清理

F. Chu, Yizhou Wang, D. S. Parker, C. Zaniolo
{"title":"使用信念传播的数据清理","authors":"F. Chu, Yizhou Wang, D. S. Parker, C. Zaniolo","doi":"10.1145/1077501.1077518","DOIUrl":null,"url":null,"abstract":"Effective data cleaning is critical in many applications where the quality of data is poor due to missing values or inaccurate values. Fortunately, a wide spectrum of applications exhibit strong dependencies between data samples, and such dependencies can be used very effectively for cleaning the data. For example, the readings of nearby sensors are generally correlated, and proteins interact with each other when performing crucial functions. We propose a data cleaning approach, based on modeling data dependencies with Markov networks. Belief propagation is used to efficiently compute the marginal or maximum posterior probabilities, so as to infer missing values or to correct errors. To illustrate the benefits and generality of the technique, we discuss its use in several applications and report on the data quality and improvements so obtained.","PeriodicalId":306187,"journal":{"name":"Information Quality in Information Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Data cleaning using belief propagation\",\"authors\":\"F. Chu, Yizhou Wang, D. S. Parker, C. Zaniolo\",\"doi\":\"10.1145/1077501.1077518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective data cleaning is critical in many applications where the quality of data is poor due to missing values or inaccurate values. Fortunately, a wide spectrum of applications exhibit strong dependencies between data samples, and such dependencies can be used very effectively for cleaning the data. For example, the readings of nearby sensors are generally correlated, and proteins interact with each other when performing crucial functions. We propose a data cleaning approach, based on modeling data dependencies with Markov networks. Belief propagation is used to efficiently compute the marginal or maximum posterior probabilities, so as to infer missing values or to correct errors. To illustrate the benefits and generality of the technique, we discuss its use in several applications and report on the data quality and improvements so obtained.\",\"PeriodicalId\":306187,\"journal\":{\"name\":\"Information Quality in Information Systems\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Quality in Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077501.1077518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Quality in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077501.1077518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在由于缺失值或不准确值而导致数据质量较差的许多应用程序中,有效的数据清理是至关重要的。幸运的是,许多应用程序在数据样本之间表现出很强的依赖关系,并且可以非常有效地使用这种依赖关系来清理数据。例如,附近传感器的读数通常是相关的,蛋白质在执行关键功能时相互作用。我们提出了一种基于马尔可夫网络数据依赖性建模的数据清理方法。信念传播用于有效地计算边际或最大后验概率,从而推断缺失值或纠正错误。为了说明该技术的优点和通用性,我们讨论了它在几个应用程序中的使用,并报告了由此获得的数据质量和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data cleaning using belief propagation
Effective data cleaning is critical in many applications where the quality of data is poor due to missing values or inaccurate values. Fortunately, a wide spectrum of applications exhibit strong dependencies between data samples, and such dependencies can be used very effectively for cleaning the data. For example, the readings of nearby sensors are generally correlated, and proteins interact with each other when performing crucial functions. We propose a data cleaning approach, based on modeling data dependencies with Markov networks. Belief propagation is used to efficiently compute the marginal or maximum posterior probabilities, so as to infer missing values or to correct errors. To illustrate the benefits and generality of the technique, we discuss its use in several applications and report on the data quality and improvements so obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信