基于聚类领域知识的k-匿名隐私保护

Taiyong Li, Changjie Tang, Jiang Wu, Qian Luo, Shengzhi Li, Xun Lin, J. Zuo
{"title":"基于聚类领域知识的k-匿名隐私保护","authors":"Taiyong Li, Changjie Tang, Jiang Wu, Qian Luo, Shengzhi Li, Xun Lin, J. Zuo","doi":"10.1109/FSKD.2008.428","DOIUrl":null,"url":null,"abstract":"Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.","PeriodicalId":208332,"journal":{"name":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"k-Anonymity via Clustering Domain Knowledge for Privacy Preservation\",\"authors\":\"Taiyong Li, Changjie Tang, Jiang Wu, Qian Luo, Shengzhi Li, Xun Lin, J. Zuo\",\"doi\":\"10.1109/FSKD.2008.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.\",\"PeriodicalId\":208332,\"journal\":{\"name\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2008.428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2008.428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

微数据发布中的隐私保护是数据挖掘领域的一项具有挑战性的任务。k-匿名法引起了研究者的广泛关注。拟标识符是k-匿名中的一个关键概念。对准标识符对敏感属性影响较大的元组进行分组,以减少信息丢失。以前的调查忽略了这一点。本文通过聚类领域知识研究k-匿名。主要贡献包括:(a)构造基于领域知识的加权矩阵并提出度量方法。它仔细考虑了准标识符和敏感属性之间的影响。(b)开发了一种基于度量方法的启发式算法,通过聚类领域知识实现k-匿名。(c)实现隐私保护算法。(d)在真实数据上的实验表明,与基本k-匿名相比,所提出的k-匿名方法减少了30%的信息丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-Anonymity via Clustering Domain Knowledge for Privacy Preservation
Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信