{"title":"基于聚类领域知识的k-匿名隐私保护","authors":"Taiyong Li, Changjie Tang, Jiang Wu, Qian Luo, Shengzhi Li, Xun Lin, J. Zuo","doi":"10.1109/FSKD.2008.428","DOIUrl":null,"url":null,"abstract":"Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.","PeriodicalId":208332,"journal":{"name":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"k-Anonymity via Clustering Domain Knowledge for Privacy Preservation\",\"authors\":\"Taiyong Li, Changjie Tang, Jiang Wu, Qian Luo, Shengzhi Li, Xun Lin, J. Zuo\",\"doi\":\"10.1109/FSKD.2008.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.\",\"PeriodicalId\":208332,\"journal\":{\"name\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2008.428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2008.428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
k-Anonymity via Clustering Domain Knowledge for Privacy Preservation
Preservation of privacy in micro-data release is a challenging task in data mining. The k-anonymity method has attracted much attention of researchers. Quasi-identifier is a key concept in k-anonymity. The tuples whose quasi-identifiers have near effect on the sensitive attributes should be grouped to reduce information loss. The previous investigations ignored this point. This paper studies k-anonymity via clustering domain knowledge. The contributions include: (a) Constructing a weighted matrix based on domain knowledge and proposing measure methods. It carefully considers the effect between the quasi-identifiers and the sensitive attributes. (b) Developing a heuristic algorithm to achieve k-anonymity via clustering domain knowledge based on the measure methods. (c) Implementing the algorithm for privacy preservation, and (d) Experiments on real data demonstrate that the proposed k-anonymous methods decrease 30% information loss compared with basic k-anonymity.