{"title":"用于表面肌电检测系统快速成型的低成本喷墨打印","authors":"G. Marco","doi":"10.1109/MEMEA.2015.7145176","DOIUrl":null,"url":null,"abstract":"In the last years, printing techniques have been developed for the realization of electronic circuits using functional inks. In this field inkjet printing technology has a number of attractive features and received a lot of interest with the development of specifically designed functional inks, including conductive inks based on silver nanoparticles or organic polymers. Some works in literature investigated the use of inkjet printing technique for the development of electrophysiological sensors. The aim of this work was to explore the potentialities of low cost inkjet printing for the prototyping of high-density electrode arrays for the detection of surface electromyographic signal (sEMG). A low cost inkjet system for the printing of conductive tracks based on standard office printer has been setup and tested for the prototyping of sEMG detection systems. The setup allowed the printing of high density bi-dimensional electrode arrays. The sEMG detection systems have been tested on the abductor pollicis muscle and biceps brachii muscle during isometric and dynamic contractions. The detected signals show a good quality and a stable contact without movement artifacts. The proposed system offers the possibility to design and print electrode arrays with different electrode patterns in a few minutes. This characteristic allows developing sEMG detection systems that can be adapted to the anatomy of the muscles under investigation in a short time.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low cost inkjet printing for the fast prototyping of surface EMG detection systems\",\"authors\":\"G. Marco\",\"doi\":\"10.1109/MEMEA.2015.7145176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years, printing techniques have been developed for the realization of electronic circuits using functional inks. In this field inkjet printing technology has a number of attractive features and received a lot of interest with the development of specifically designed functional inks, including conductive inks based on silver nanoparticles or organic polymers. Some works in literature investigated the use of inkjet printing technique for the development of electrophysiological sensors. The aim of this work was to explore the potentialities of low cost inkjet printing for the prototyping of high-density electrode arrays for the detection of surface electromyographic signal (sEMG). A low cost inkjet system for the printing of conductive tracks based on standard office printer has been setup and tested for the prototyping of sEMG detection systems. The setup allowed the printing of high density bi-dimensional electrode arrays. The sEMG detection systems have been tested on the abductor pollicis muscle and biceps brachii muscle during isometric and dynamic contractions. The detected signals show a good quality and a stable contact without movement artifacts. The proposed system offers the possibility to design and print electrode arrays with different electrode patterns in a few minutes. This characteristic allows developing sEMG detection systems that can be adapted to the anatomy of the muscles under investigation in a short time.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMEA.2015.7145176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMEA.2015.7145176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low cost inkjet printing for the fast prototyping of surface EMG detection systems
In the last years, printing techniques have been developed for the realization of electronic circuits using functional inks. In this field inkjet printing technology has a number of attractive features and received a lot of interest with the development of specifically designed functional inks, including conductive inks based on silver nanoparticles or organic polymers. Some works in literature investigated the use of inkjet printing technique for the development of electrophysiological sensors. The aim of this work was to explore the potentialities of low cost inkjet printing for the prototyping of high-density electrode arrays for the detection of surface electromyographic signal (sEMG). A low cost inkjet system for the printing of conductive tracks based on standard office printer has been setup and tested for the prototyping of sEMG detection systems. The setup allowed the printing of high density bi-dimensional electrode arrays. The sEMG detection systems have been tested on the abductor pollicis muscle and biceps brachii muscle during isometric and dynamic contractions. The detected signals show a good quality and a stable contact without movement artifacts. The proposed system offers the possibility to design and print electrode arrays with different electrode patterns in a few minutes. This characteristic allows developing sEMG detection systems that can be adapted to the anatomy of the muscles under investigation in a short time.