用粒子群算法辨识分数阶系统

Li Meng, Dongfeng Wang, P. Han
{"title":"用粒子群算法辨识分数阶系统","authors":"Li Meng, Dongfeng Wang, P. Han","doi":"10.1109/ICMLC.2012.6359551","DOIUrl":null,"url":null,"abstract":"This paper presents the identification of fractional order system in frequency domain by using Particle Swarm Optimization (PSO) algorithm. PSO is extended to estimate the fractional derivative order. Meanwhile, recursive least squares algorithm is associated to calculate the denominator and numerator coefficients of transfer function. Simulation examples with noise-free and noisy data are given to verify the effectiveness of the method proposed in this paper.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identification of fractional order system using Particle Swarm Optimization\",\"authors\":\"Li Meng, Dongfeng Wang, P. Han\",\"doi\":\"10.1109/ICMLC.2012.6359551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the identification of fractional order system in frequency domain by using Particle Swarm Optimization (PSO) algorithm. PSO is extended to estimate the fractional derivative order. Meanwhile, recursive least squares algorithm is associated to calculate the denominator and numerator coefficients of transfer function. Simulation examples with noise-free and noisy data are given to verify the effectiveness of the method proposed in this paper.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6359551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于粒子群算法的分数阶系统频域辨识方法。将粒子群算法推广到分数阶导数阶数的估计。同时结合递推最小二乘算法计算传递函数的分母和分子系数。通过无噪声和有噪声数据的仿真实例验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of fractional order system using Particle Swarm Optimization
This paper presents the identification of fractional order system in frequency domain by using Particle Swarm Optimization (PSO) algorithm. PSO is extended to estimate the fractional derivative order. Meanwhile, recursive least squares algorithm is associated to calculate the denominator and numerator coefficients of transfer function. Simulation examples with noise-free and noisy data are given to verify the effectiveness of the method proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信