卷积层次神经网络分类器

I. Gadzhiev, S. Dolenko
{"title":"卷积层次神经网络分类器","authors":"I. Gadzhiev, S. Dolenko","doi":"10.22323/1.410.0014","DOIUrl":null,"url":null,"abstract":"The report presents an algorithm for constructing a convolutional hierarchical neural network classifier, which is a modification of the algorithm for constructing hierarchical neural network classifiers suggested before. The original algorithm was designed to exploit intrinsic class hierarchy to build a class tree with a neural network in each node classifying groups of initial classes (in a non-terminal node) or a subset of original classes (in a terminal node). The convolutional modification utilizes convolutional neural networks instead of regular fully connected networks in order to apply the model to image classification tasks. Use of class hierarchy for image classification should reduce the number of adjusted neural network parameters compared to deep convolutional neural networks, and therefore it should reduce training and inference time. In this context the algorithm may be compared with some pruning techniques. The convolutional hierarchical neural network classifier inherits some hyperparameters of a conventional hierarchical neural network classifier, like the activation threshold and the threshold by the share of voting patterns. The goal of this study was to explore different strategies of choosing these hyperparameters. To test these strategies, we used the CIFAR-10 dataset. Also, for demonstration purposes we apply the convolutional hierarchical neural network classifier to the CIFAR-100 dataset.","PeriodicalId":217453,"journal":{"name":"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolutional Hierarchical Neural Network Classifier\",\"authors\":\"I. Gadzhiev, S. Dolenko\",\"doi\":\"10.22323/1.410.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The report presents an algorithm for constructing a convolutional hierarchical neural network classifier, which is a modification of the algorithm for constructing hierarchical neural network classifiers suggested before. The original algorithm was designed to exploit intrinsic class hierarchy to build a class tree with a neural network in each node classifying groups of initial classes (in a non-terminal node) or a subset of original classes (in a terminal node). The convolutional modification utilizes convolutional neural networks instead of regular fully connected networks in order to apply the model to image classification tasks. Use of class hierarchy for image classification should reduce the number of adjusted neural network parameters compared to deep convolutional neural networks, and therefore it should reduce training and inference time. In this context the algorithm may be compared with some pruning techniques. The convolutional hierarchical neural network classifier inherits some hyperparameters of a conventional hierarchical neural network classifier, like the activation threshold and the threshold by the share of voting patterns. The goal of this study was to explore different strategies of choosing these hyperparameters. To test these strategies, we used the CIFAR-10 dataset. Also, for demonstration purposes we apply the convolutional hierarchical neural network classifier to the CIFAR-100 dataset.\",\"PeriodicalId\":217453,\"journal\":{\"name\":\"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.410.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.410.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种构造卷积层次神经网络分类器的算法,该算法是对之前提出的构造层次神经网络分类器算法的改进。原始算法利用固有的类层次结构构建类树,在每个节点上用神经网络对初始类(在非终端节点上)或原始类的子集(在终端节点上)进行分类。卷积修正利用卷积神经网络代替常规的全连接网络,将模型应用于图像分类任务。与深度卷积神经网络相比,使用类层次进行图像分类可以减少调整神经网络参数的数量,因此可以减少训练和推理时间。在这种情况下,该算法可以与一些修剪技术进行比较。卷积层次神经网络分类器继承了传统层次神经网络分类器的一些超参数,如激活阈值和投票模式份额阈值。本研究的目的是探讨选择这些超参数的不同策略。为了测试这些策略,我们使用了CIFAR-10数据集。此外,为了演示目的,我们将卷积分层神经网络分类器应用于CIFAR-100数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convolutional Hierarchical Neural Network Classifier
The report presents an algorithm for constructing a convolutional hierarchical neural network classifier, which is a modification of the algorithm for constructing hierarchical neural network classifiers suggested before. The original algorithm was designed to exploit intrinsic class hierarchy to build a class tree with a neural network in each node classifying groups of initial classes (in a non-terminal node) or a subset of original classes (in a terminal node). The convolutional modification utilizes convolutional neural networks instead of regular fully connected networks in order to apply the model to image classification tasks. Use of class hierarchy for image classification should reduce the number of adjusted neural network parameters compared to deep convolutional neural networks, and therefore it should reduce training and inference time. In this context the algorithm may be compared with some pruning techniques. The convolutional hierarchical neural network classifier inherits some hyperparameters of a conventional hierarchical neural network classifier, like the activation threshold and the threshold by the share of voting patterns. The goal of this study was to explore different strategies of choosing these hyperparameters. To test these strategies, we used the CIFAR-10 dataset. Also, for demonstration purposes we apply the convolutional hierarchical neural network classifier to the CIFAR-100 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信