氧对Ti-48 at中α→γ块状相变的影响%铝合金

W. Lefebvre, A. Loiseau, M. Thomas, A. Menand
{"title":"氧对Ti-48 at中α→γ块状相变的影响%铝合金","authors":"W. Lefebvre, A. Loiseau, M. Thomas, A. Menand","doi":"10.1080/01418610208235743","DOIUrl":null,"url":null,"abstract":"Abstract The structure and composition of a Ti-48 at.% Al alloy with various oxygen contents, quenched from a homogeneous ci state, have been studied by coupling a one-dimensional atom probe and transmission electron microscopy. When the global oxygen content is lower than 1 at.%, the alloys display massive ym-phase regions and regions having a two-phase (α2 + γ) ultrafine lamellar structure. γm regions are not of a single-phase nature but contain very thin α2 plates. Analyses show that the precipitation of this phase is driven by the excess oxygen in the γm phase. Detailed structural analysis of the ultrafine lamellar structure reveals that it is not formed from either the α phase or the γm phase at high temperatures but at low temperatures from chemically ordered α2 regions. When the oxygen content is higher than 1 at.%, only an ultrafine lamellar structure is observed, meaning that the α → γm massive transformation is suppressed and replaced by the α → α2 → α2 + γ transformations paths. Oxygen is therefore found to favour α2 ordering, the driving force being the extreme difference of solubility of oxygen between α2 and γ.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Influence of oxygen on the α → γ massive transformation in a Ti-48 at.% Al alloy\",\"authors\":\"W. Lefebvre, A. Loiseau, M. Thomas, A. Menand\",\"doi\":\"10.1080/01418610208235743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The structure and composition of a Ti-48 at.% Al alloy with various oxygen contents, quenched from a homogeneous ci state, have been studied by coupling a one-dimensional atom probe and transmission electron microscopy. When the global oxygen content is lower than 1 at.%, the alloys display massive ym-phase regions and regions having a two-phase (α2 + γ) ultrafine lamellar structure. γm regions are not of a single-phase nature but contain very thin α2 plates. Analyses show that the precipitation of this phase is driven by the excess oxygen in the γm phase. Detailed structural analysis of the ultrafine lamellar structure reveals that it is not formed from either the α phase or the γm phase at high temperatures but at low temperatures from chemically ordered α2 regions. When the oxygen content is higher than 1 at.%, only an ultrafine lamellar structure is observed, meaning that the α → γm massive transformation is suppressed and replaced by the α → α2 → α2 + γ transformations paths. Oxygen is therefore found to favour α2 ordering, the driving force being the extreme difference of solubility of oxygen between α2 and γ.\",\"PeriodicalId\":114492,\"journal\":{\"name\":\"Philosophical Magazine A\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01418610208235743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208235743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

摘要:研究了Ti-48 at的结构和组成。用一维原子探针和透射电子显微镜对不同氧含量的合金进行了研究。当总氧含量低于1 at时。%时,合金表现出大量的m相区和两相(α2 + γ)超细片层结构区。γ - m区不是单相的,而是含有很薄的α2板。分析表明,该相的析出是由γm相中过量的氧驱动的。详细的结构分析表明,超细层状结构既不是在高温下由α相形成,也不是由γm相形成,而是在低温下由有序的α2区形成。当氧含量大于1 at时。%,只观察到超细片层结构,这意味着α→γm的大规模转变被抑制,取而代之的是α→α2→α2 + γ转变路径。因此发现氧有利于α2的排序,其驱动力是氧在α2和γ之间溶解度的巨大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of oxygen on the α → γ massive transformation in a Ti-48 at.% Al alloy
Abstract The structure and composition of a Ti-48 at.% Al alloy with various oxygen contents, quenched from a homogeneous ci state, have been studied by coupling a one-dimensional atom probe and transmission electron microscopy. When the global oxygen content is lower than 1 at.%, the alloys display massive ym-phase regions and regions having a two-phase (α2 + γ) ultrafine lamellar structure. γm regions are not of a single-phase nature but contain very thin α2 plates. Analyses show that the precipitation of this phase is driven by the excess oxygen in the γm phase. Detailed structural analysis of the ultrafine lamellar structure reveals that it is not formed from either the α phase or the γm phase at high temperatures but at low temperatures from chemically ordered α2 regions. When the oxygen content is higher than 1 at.%, only an ultrafine lamellar structure is observed, meaning that the α → γm massive transformation is suppressed and replaced by the α → α2 → α2 + γ transformations paths. Oxygen is therefore found to favour α2 ordering, the driving force being the extreme difference of solubility of oxygen between α2 and γ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信