鲁棒实时人脸识别

B. Lagerwall, Serestina Viriri
{"title":"鲁棒实时人脸识别","authors":"B. Lagerwall, Serestina Viriri","doi":"10.1145/2513456.2513494","DOIUrl":null,"url":null,"abstract":"This paper describes and discusses the algorithms required to perform face detection and face recognition in real-time. Simple features, similar to Haar basis functions, are used for detection and the eigenfaces technique is used for recognition. Further to the above, a novel method of increasing face recognition rates is presented for situations where a database containing multiple images of the same subject is being used. It is shown that these well-known, existing techniques for both detection and recognition can be combined in a manner that runs in real-time, but still preserves the original success rates mentioned in literature.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robust real-time face recognition\",\"authors\":\"B. Lagerwall, Serestina Viriri\",\"doi\":\"10.1145/2513456.2513494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes and discusses the algorithms required to perform face detection and face recognition in real-time. Simple features, similar to Haar basis functions, are used for detection and the eigenfaces technique is used for recognition. Further to the above, a novel method of increasing face recognition rates is presented for situations where a database containing multiple images of the same subject is being used. It is shown that these well-known, existing techniques for both detection and recognition can be combined in a manner that runs in real-time, but still preserves the original success rates mentioned in literature.\",\"PeriodicalId\":159306,\"journal\":{\"name\":\"2013 Africon\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Africon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513456.2513494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513456.2513494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述并讨论了实时进行人脸检测和人脸识别所需的算法。采用类似哈尔基函数的简单特征进行检测,采用特征脸技术进行识别。此外,在使用包含同一主题的多个图像的数据库的情况下,提出了一种提高人脸识别率的新方法。研究表明,这些已知的、现有的检测和识别技术可以以一种实时运行的方式结合起来,但仍然保留了文献中提到的原始成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust real-time face recognition
This paper describes and discusses the algorithms required to perform face detection and face recognition in real-time. Simple features, similar to Haar basis functions, are used for detection and the eigenfaces technique is used for recognition. Further to the above, a novel method of increasing face recognition rates is presented for situations where a database containing multiple images of the same subject is being used. It is shown that these well-known, existing techniques for both detection and recognition can be combined in a manner that runs in real-time, but still preserves the original success rates mentioned in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信