基于自然图像理解的显著性

Qingshan Li, Yue Zhou, Lei Xu
{"title":"基于自然图像理解的显著性","authors":"Qingshan Li, Yue Zhou, Lei Xu","doi":"10.1109/ACPR.2011.6166648","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for natural image understanding. We improved the effect of saliency detection for the purpose of image segmentation at first. Then Graph cuts are used to find global optimal segmentation of N-dimensional image. After that, we adopt the scheme of supervised learning to classify the scene type of the image. The main advantages of our method are that: Firstly we revised the existed sparse saliency model to better suit for image segmentation, Secondly we propose a new color modeling method during the process of GrabCut segmentation. Finally we extract object-level top down information and low-level image cues together to distinguish the type of images. Experiments show that our proposed scheme can obtain comparable performance to other approaches.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency based natural image understanding\",\"authors\":\"Qingshan Li, Yue Zhou, Lei Xu\",\"doi\":\"10.1109/ACPR.2011.6166648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for natural image understanding. We improved the effect of saliency detection for the purpose of image segmentation at first. Then Graph cuts are used to find global optimal segmentation of N-dimensional image. After that, we adopt the scheme of supervised learning to classify the scene type of the image. The main advantages of our method are that: Firstly we revised the existed sparse saliency model to better suit for image segmentation, Secondly we propose a new color modeling method during the process of GrabCut segmentation. Finally we extract object-level top down information and low-level image cues together to distinguish the type of images. Experiments show that our proposed scheme can obtain comparable performance to other approaches.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的自然图像理解方法。我们首先改进了显著性检测的效果,以达到图像分割的目的。然后利用图切算法对n维图像进行全局最优分割。然后,我们采用监督学习的方案对图像的场景类型进行分类。该方法的主要优点是:首先,我们改进了现有的稀疏显著性模型,使其更适合图像分割;其次,我们在GrabCut分割过程中提出了一种新的颜色建模方法。最后,我们提取对象级自顶向下信息和底层图像线索,以区分图像的类型。实验结果表明,该方法可以获得与其他方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency based natural image understanding
This paper presents a novel method for natural image understanding. We improved the effect of saliency detection for the purpose of image segmentation at first. Then Graph cuts are used to find global optimal segmentation of N-dimensional image. After that, we adopt the scheme of supervised learning to classify the scene type of the image. The main advantages of our method are that: Firstly we revised the existed sparse saliency model to better suit for image segmentation, Secondly we propose a new color modeling method during the process of GrabCut segmentation. Finally we extract object-level top down information and low-level image cues together to distinguish the type of images. Experiments show that our proposed scheme can obtain comparable performance to other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信