基于智能电网状态估计的恶意数据攻击:攻击策略与对策

O. Kosut, Liyan Jia, R. Thomas, L. Tong
{"title":"基于智能电网状态估计的恶意数据攻击:攻击策略与对策","authors":"O. Kosut, Liyan Jia, R. Thomas, L. Tong","doi":"10.1109/SMARTGRID.2010.5622045","DOIUrl":null,"url":null,"abstract":"The problem of constructing malicious data attack of smart grid state estimation is considered together with countermeasures that detect the presence of such attacks. For the adversary, using a graph theoretic approach, an efficient algorithm with polynomial-time complexity is obtained to find the minimum size unobservable malicious data attacks. When the unobservable attack does not exist due to restrictions of meter access, attacks are constructed to minimize the residue energy of attack while guaranteeing a certain level of increase of mean square error. For the control center, a computationally efficient algorithm is derived to detect and localize attacks using the generalized likelihood ratio test regularized by an L_1 norm penalty on the strength of attack.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"368","resultStr":"{\"title\":\"Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures\",\"authors\":\"O. Kosut, Liyan Jia, R. Thomas, L. Tong\",\"doi\":\"10.1109/SMARTGRID.2010.5622045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of constructing malicious data attack of smart grid state estimation is considered together with countermeasures that detect the presence of such attacks. For the adversary, using a graph theoretic approach, an efficient algorithm with polynomial-time complexity is obtained to find the minimum size unobservable malicious data attacks. When the unobservable attack does not exist due to restrictions of meter access, attacks are constructed to minimize the residue energy of attack while guaranteeing a certain level of increase of mean square error. For the control center, a computationally efficient algorithm is derived to detect and localize attacks using the generalized likelihood ratio test regularized by an L_1 norm penalty on the strength of attack.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"368\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 368

摘要

研究了智能电网状态估计中恶意数据攻击的构造问题以及检测恶意数据攻击的对策。针对攻击方,利用图论方法,获得了一种具有多项式时间复杂度的有效算法来寻找最小规模的不可观察恶意数据攻击。当由于仪表访问的限制而不存在不可观察攻击时,在保证均方误差有一定程度的增加的同时,构造攻击以最小化攻击的剩余能量。针对控制中心,推导了一种计算效率高的攻击检测和定位算法,该算法采用基于攻击强度的L_1范数惩罚进行正则化的广义似然比检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures
The problem of constructing malicious data attack of smart grid state estimation is considered together with countermeasures that detect the presence of such attacks. For the adversary, using a graph theoretic approach, an efficient algorithm with polynomial-time complexity is obtained to find the minimum size unobservable malicious data attacks. When the unobservable attack does not exist due to restrictions of meter access, attacks are constructed to minimize the residue energy of attack while guaranteeing a certain level of increase of mean square error. For the control center, a computationally efficient algorithm is derived to detect and localize attacks using the generalized likelihood ratio test regularized by an L_1 norm penalty on the strength of attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信