{"title":"冲击载荷钢的结构与力学性能","authors":"H. Bowden, P. Kelly","doi":"10.1179/MSC.1967.1.1.75","DOIUrl":null,"url":null,"abstract":"AbstractTensile tests and transmission electron microscopy have been used to investigate the relationship between mechanical properties and microstructure in three plain carbon steels shock-loaded to peak pressures between 100 and 250 kilobars. The most dramatic change in structures and properties occurs at pressures in excess of that required to induce the phase transformation α → ɛ → α. The value of this pressure depends on the original microstructure of the steel, so that an annealed low-carbon steel shows considerable transformation at 150 kilobars, while a normalized 0.99% C steel does not transform until the peak pressure exceeds 200 kilobars. Below the transformation pressure the low-carbon steel is strengthened by shock-loading, while this does not occur in the two high-carbon steels.","PeriodicalId":103313,"journal":{"name":"Metal Science Journal","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Structure and Mechanical Properties of Shock-Loaded Steels\",\"authors\":\"H. Bowden, P. Kelly\",\"doi\":\"10.1179/MSC.1967.1.1.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractTensile tests and transmission electron microscopy have been used to investigate the relationship between mechanical properties and microstructure in three plain carbon steels shock-loaded to peak pressures between 100 and 250 kilobars. The most dramatic change in structures and properties occurs at pressures in excess of that required to induce the phase transformation α → ɛ → α. The value of this pressure depends on the original microstructure of the steel, so that an annealed low-carbon steel shows considerable transformation at 150 kilobars, while a normalized 0.99% C steel does not transform until the peak pressure exceeds 200 kilobars. Below the transformation pressure the low-carbon steel is strengthened by shock-loading, while this does not occur in the two high-carbon steels.\",\"PeriodicalId\":103313,\"journal\":{\"name\":\"Metal Science Journal\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/MSC.1967.1.1.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/MSC.1967.1.1.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Structure and Mechanical Properties of Shock-Loaded Steels
AbstractTensile tests and transmission electron microscopy have been used to investigate the relationship between mechanical properties and microstructure in three plain carbon steels shock-loaded to peak pressures between 100 and 250 kilobars. The most dramatic change in structures and properties occurs at pressures in excess of that required to induce the phase transformation α → ɛ → α. The value of this pressure depends on the original microstructure of the steel, so that an annealed low-carbon steel shows considerable transformation at 150 kilobars, while a normalized 0.99% C steel does not transform until the peak pressure exceeds 200 kilobars. Below the transformation pressure the low-carbon steel is strengthened by shock-loading, while this does not occur in the two high-carbon steels.