基于正交多项式的求方程f (x) = 0根的迭代法

E. J. Mamadu
{"title":"基于正交多项式的求方程f (x) = 0根的迭代法","authors":"E. J. Mamadu","doi":"10.9734/arjom/2023/v19i9708","DOIUrl":null,"url":null,"abstract":"Iterative methods provide hope for many nonlinear engineering problems that cannot be solved through analytic procedures. In this article, orthogonal polynomial based iterative schemes are developed for the approximate solutions of nonlinear algebraic and transcendental equations. Basically, Mamadu-Njoseh orthogonal polynomials are employed as basis functions to derive the new iterative schemes called the “Mamadu \\(\\Delta\\) 2 and \\(\\Delta\\) 3 iterative schemes”. Convergence analysis of the schemes shows the convergence rate as of order 3 and 4, respectively. Numerical experimental of the new schemes show the feasibility and correctness of the method.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Orthogonal Polynomial Based Iterative Procedure for Finding the Root of the Equation f (x) = 0\",\"authors\":\"E. J. Mamadu\",\"doi\":\"10.9734/arjom/2023/v19i9708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative methods provide hope for many nonlinear engineering problems that cannot be solved through analytic procedures. In this article, orthogonal polynomial based iterative schemes are developed for the approximate solutions of nonlinear algebraic and transcendental equations. Basically, Mamadu-Njoseh orthogonal polynomials are employed as basis functions to derive the new iterative schemes called the “Mamadu \\\\(\\\\Delta\\\\) 2 and \\\\(\\\\Delta\\\\) 3 iterative schemes”. Convergence analysis of the schemes shows the convergence rate as of order 3 and 4, respectively. Numerical experimental of the new schemes show the feasibility and correctness of the method.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迭代方法为许多无法通过解析方法解决的非线性工程问题提供了希望。本文提出了基于正交多项式的非线性代数和超越方程近似解的迭代格式。基本上,采用Mamadu- njoseh正交多项式作为基函数,推导出新的迭代方案,称为“Mamadu \(\Delta\) 2和\(\Delta\) 3迭代方案”。收敛性分析表明,各方案的收敛速度分别为3阶和4阶。数值实验结果表明了该方法的可行性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Orthogonal Polynomial Based Iterative Procedure for Finding the Root of the Equation f (x) = 0
Iterative methods provide hope for many nonlinear engineering problems that cannot be solved through analytic procedures. In this article, orthogonal polynomial based iterative schemes are developed for the approximate solutions of nonlinear algebraic and transcendental equations. Basically, Mamadu-Njoseh orthogonal polynomials are employed as basis functions to derive the new iterative schemes called the “Mamadu \(\Delta\) 2 and \(\Delta\) 3 iterative schemes”. Convergence analysis of the schemes shows the convergence rate as of order 3 and 4, respectively. Numerical experimental of the new schemes show the feasibility and correctness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信