{"title":"基于进化优化内核的多端口多终端模拟路由器","authors":"R. Martins, N. Lourenço, A. Canelas, N. Horta","doi":"10.1109/CEC.2013.6557907","DOIUrl":null,"url":null,"abstract":"In the state-of-the-art on analog integrated circuit (IC) automatic routing approaches it is assumed that each terminal has only one port that can be routed, however, in practice a device usually contains multiple electrically-equivalent locations where the connection can be made, multi-port terminals, which are not properly explored. This paper describes an innovative evolutionary approach with multi-port multiterminal (MP/MT) nets for analog IC automatic routing. The netlist and the multi-port terminals are modeled in a Group-Steiner problem that is solved by the Global Router, to obtain the terminal-to-terminal connectivity, and then, for the detailed routing, an optimization kernel is used, namely, an enhanced version of the multi-objective evolutionary algorithm NSGA-II. The Router starts by a single-net procedure, and culminates in a process where all nets are optimized simultaneously. The technology design rules are verified during the evolutionary generation using an in-loop built-in layout evaluation procedure. The automatic routing generation is detailed, and demonstrated for the generation of the layout of a typical analog circuit, for the UMC 130nm design process. The automatically generated layouts are validated using the industrial grade Calibre® tool and the performances of the extracted circuits are compared with the ones achieved in the circuit-level design.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-port multi-terminal analog router based on an evolutionary optimization kernel\",\"authors\":\"R. Martins, N. Lourenço, A. Canelas, N. Horta\",\"doi\":\"10.1109/CEC.2013.6557907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the state-of-the-art on analog integrated circuit (IC) automatic routing approaches it is assumed that each terminal has only one port that can be routed, however, in practice a device usually contains multiple electrically-equivalent locations where the connection can be made, multi-port terminals, which are not properly explored. This paper describes an innovative evolutionary approach with multi-port multiterminal (MP/MT) nets for analog IC automatic routing. The netlist and the multi-port terminals are modeled in a Group-Steiner problem that is solved by the Global Router, to obtain the terminal-to-terminal connectivity, and then, for the detailed routing, an optimization kernel is used, namely, an enhanced version of the multi-objective evolutionary algorithm NSGA-II. The Router starts by a single-net procedure, and culminates in a process where all nets are optimized simultaneously. The technology design rules are verified during the evolutionary generation using an in-loop built-in layout evaluation procedure. The automatic routing generation is detailed, and demonstrated for the generation of the layout of a typical analog circuit, for the UMC 130nm design process. The automatically generated layouts are validated using the industrial grade Calibre® tool and the performances of the extracted circuits are compared with the ones achieved in the circuit-level design.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-port multi-terminal analog router based on an evolutionary optimization kernel
In the state-of-the-art on analog integrated circuit (IC) automatic routing approaches it is assumed that each terminal has only one port that can be routed, however, in practice a device usually contains multiple electrically-equivalent locations where the connection can be made, multi-port terminals, which are not properly explored. This paper describes an innovative evolutionary approach with multi-port multiterminal (MP/MT) nets for analog IC automatic routing. The netlist and the multi-port terminals are modeled in a Group-Steiner problem that is solved by the Global Router, to obtain the terminal-to-terminal connectivity, and then, for the detailed routing, an optimization kernel is used, namely, an enhanced version of the multi-objective evolutionary algorithm NSGA-II. The Router starts by a single-net procedure, and culminates in a process where all nets are optimized simultaneously. The technology design rules are verified during the evolutionary generation using an in-loop built-in layout evaluation procedure. The automatic routing generation is detailed, and demonstrated for the generation of the layout of a typical analog circuit, for the UMC 130nm design process. The automatically generated layouts are validated using the industrial grade Calibre® tool and the performances of the extracted circuits are compared with the ones achieved in the circuit-level design.