贝叶斯统计方法对象棋引擎的优化

Ivan Ivec, Ivana Vojnovi'c
{"title":"贝叶斯统计方法对象棋引擎的优化","authors":"Ivan Ivec, Ivana Vojnovi'c","doi":"10.32817/ams.2.5","DOIUrl":null,"url":null,"abstract":"We develop a new method for stochastic optimization using the Bayesian statistics approach. More precisely, we optimize parameters of chess engines as those data are available to us, but the method should apply to all situations where we want to optimize a certain gain/loss function which has no analytical form and thus cannot be measured directly but only by comparison of two parameter sets. We also experimentally compare the new method with the famous SPSA method.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian statistics approach to chess engines optimization\",\"authors\":\"Ivan Ivec, Ivana Vojnovi'c\",\"doi\":\"10.32817/ams.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new method for stochastic optimization using the Bayesian statistics approach. More precisely, we optimize parameters of chess engines as those data are available to us, but the method should apply to all situations where we want to optimize a certain gain/loss function which has no analytical form and thus cannot be measured directly but only by comparison of two parameter sets. We also experimentally compare the new method with the famous SPSA method.\",\"PeriodicalId\":309225,\"journal\":{\"name\":\"Acta mathematica Spalatensia\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta mathematica Spalatensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32817/ams.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/ams.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用贝叶斯统计方法进行随机优化的新方法。更准确地说,我们优化象棋引擎的参数,因为这些数据对我们来说是可用的,但这种方法应该适用于我们想要优化某种增益/损失函数的所有情况,这种函数没有分析形式,因此不能直接测量,只能通过比较两个参数集。并与著名的SPSA方法进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian statistics approach to chess engines optimization
We develop a new method for stochastic optimization using the Bayesian statistics approach. More precisely, we optimize parameters of chess engines as those data are available to us, but the method should apply to all situations where we want to optimize a certain gain/loss function which has no analytical form and thus cannot be measured directly but only by comparison of two parameter sets. We also experimentally compare the new method with the famous SPSA method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信