高振荡函数积分的改进proony方法

V. Borulko, G. P. Zouros
{"title":"高振荡函数积分的改进proony方法","authors":"V. Borulko, G. P. Zouros","doi":"10.1109/DIPED.2018.8543127","DOIUrl":null,"url":null,"abstract":"In this work we propose a modified Prony interpolation (MPI) technique for the integration of highly oscillating functions appearing in various engineering problems, like electrically large scattering or physical optics problems. We develop a quadrature for the numerical integration over a finite domain [a, b]. In domain [a, b], the integrand function is appropriately interpolated using Prony’s method, taking into account the optimal estimation of the complex exponents existing in the interpolation formula. This optimal selection is chosen by examining the principal value of the involved logarithm, and allows for improved convergence. The convergence and accuracy of the MPI method is demonstrated by comparisons with the alternative Gauss-Kronrod quadrature, which is suitable for integrating highly oscillating functions. Different numerical results are presented. Represented numerical results.","PeriodicalId":146873,"journal":{"name":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified Prony Method for Integration of Highly Oscillating Functions\",\"authors\":\"V. Borulko, G. P. Zouros\",\"doi\":\"10.1109/DIPED.2018.8543127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a modified Prony interpolation (MPI) technique for the integration of highly oscillating functions appearing in various engineering problems, like electrically large scattering or physical optics problems. We develop a quadrature for the numerical integration over a finite domain [a, b]. In domain [a, b], the integrand function is appropriately interpolated using Prony’s method, taking into account the optimal estimation of the complex exponents existing in the interpolation formula. This optimal selection is chosen by examining the principal value of the involved logarithm, and allows for improved convergence. The convergence and accuracy of the MPI method is demonstrated by comparisons with the alternative Gauss-Kronrod quadrature, which is suitable for integrating highly oscillating functions. Different numerical results are presented. Represented numerical results.\",\"PeriodicalId\":146873,\"journal\":{\"name\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2018.8543127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2018.8543127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种改进的proony插值(MPI)技术,用于积分出现在各种工程问题中的高振荡函数,如电大散射或物理光学问题。我们发展了有限域上数值积分的正交[a, b]。在定义域[a, b]中,考虑到插值公式中存在复指数的最优估计,利用proony方法对被积函数进行适当的插值。这种最优选择是通过检查所涉及的对数的主值来选择的,并且允许改进的收敛性。通过与可选高斯-克朗罗德积分法的比较,证明了MPI方法的收敛性和准确性,该方法适用于高振荡函数的积分。给出了不同的数值结果。表示数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Prony Method for Integration of Highly Oscillating Functions
In this work we propose a modified Prony interpolation (MPI) technique for the integration of highly oscillating functions appearing in various engineering problems, like electrically large scattering or physical optics problems. We develop a quadrature for the numerical integration over a finite domain [a, b]. In domain [a, b], the integrand function is appropriately interpolated using Prony’s method, taking into account the optimal estimation of the complex exponents existing in the interpolation formula. This optimal selection is chosen by examining the principal value of the involved logarithm, and allows for improved convergence. The convergence and accuracy of the MPI method is demonstrated by comparisons with the alternative Gauss-Kronrod quadrature, which is suitable for integrating highly oscillating functions. Different numerical results are presented. Represented numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信