大字母的弱循环重复阈值

Lucas Mol, N. Rampersad
{"title":"大字母的弱循环重复阈值","authors":"Lucas Mol, N. Rampersad","doi":"10.1051/ita/2020006","DOIUrl":null,"url":null,"abstract":"The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weak Circular Repetition Threshold Over Large Alphabets\",\"authors\":\"Lucas Mol, N. Rampersad\",\"doi\":\"10.1051/ita/2020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2020006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

n个字母上的单词的重复阈值,记作RT(n),是所有r的集合的最小值,使得在n个字母上存在任意长的r-free单词。n个字母上的循环词的重复阈值可以用三种自然的方式定义,这就产生了n个字母的弱、中间和强循环重复阈值,分别表示为CRTW(n)、CRTI(n)和CRTS(n)。Currie和本作者推测,对于所有n≥4,CRTI(n) = CRTW(n) = RT(n)。我们证明了对于所有n≥45的情况下,CRTW(n) = RT(n),这证实了这个猜想对于除了有限多个n之外的所有n值的弱版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Weak Circular Repetition Threshold Over Large Alphabets
The repetition threshold for words on n letters, denoted RT(n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted CRTW(n), CRTI(n), and CRTS(n), respectively. Currie and the present authors conjectured that CRTI(n) = CRTW(n) = RT(n) for all n ≥ 4. We prove that CRTW(n) = RT(n) for all n ≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信