求解卡方列联表偏倚的几种方法

Okeke Charles C.
{"title":"求解卡方列联表偏倚的几种方法","authors":"Okeke Charles C.","doi":"10.32861/AJAMS.51.1.6","DOIUrl":null,"url":null,"abstract":"Some methods of solving the biasedness in Chi–square Contingency table statistic were considered. Phi Coefficient, Contingency Coefficient and Cramer’s V tools were employed to solve the biasedness in the use of Chi–square test. Our results show that any of Phi coefficient, Contingency coefficient or Cramer’s V can be used to describe the association between two variables if the data matrix is 2 x 2. Contingency Coefficient was recommended as a good statistic when the matrix dimension is the same while the Cramer’s V is most adequate when the data matrix differs.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Alternative Methods of Solving Biasedness in Chi – Square Contingency Table\",\"authors\":\"Okeke Charles C.\",\"doi\":\"10.32861/AJAMS.51.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some methods of solving the biasedness in Chi–square Contingency table statistic were considered. Phi Coefficient, Contingency Coefficient and Cramer’s V tools were employed to solve the biasedness in the use of Chi–square test. Our results show that any of Phi coefficient, Contingency coefficient or Cramer’s V can be used to describe the association between two variables if the data matrix is 2 x 2. Contingency Coefficient was recommended as a good statistic when the matrix dimension is the same while the Cramer’s V is most adequate when the data matrix differs.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32861/AJAMS.51.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/AJAMS.51.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了求解卡方列联表统计偏性的几种方法。在使用卡方检验时,采用Phi系数、权变系数和Cramer 's V工具解决偏倚问题。我们的结果表明,如果数据矩阵为2 x 2,则Phi系数、权变系数或克莱默V中的任何一个都可以用来描述两个变量之间的关联。当矩阵维数相同时,建议使用权变系数作为较好的统计量,而当数据矩阵不同时,Cramer 's V最合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative Methods of Solving Biasedness in Chi – Square Contingency Table
Some methods of solving the biasedness in Chi–square Contingency table statistic were considered. Phi Coefficient, Contingency Coefficient and Cramer’s V tools were employed to solve the biasedness in the use of Chi–square test. Our results show that any of Phi coefficient, Contingency coefficient or Cramer’s V can be used to describe the association between two variables if the data matrix is 2 x 2. Contingency Coefficient was recommended as a good statistic when the matrix dimension is the same while the Cramer’s V is most adequate when the data matrix differs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信