用于宏基因组数据分组的边缘堆栈去噪自编码器

S. Kouchaki, Santosh Tirunagari, Avraam Tapinos, D. Robertson
{"title":"用于宏基因组数据分组的边缘堆栈去噪自编码器","authors":"S. Kouchaki, Santosh Tirunagari, Avraam Tapinos, D. Robertson","doi":"10.1109/CIBCB.2017.8058552","DOIUrl":null,"url":null,"abstract":"Shotgun sequencing has facilitated the analysis of complex microbial communities. Recently we have shown how local binary patterns (LBP) from image processing can be used to analyse the sequenced samples. LBP codes represent the data in a sparse high dimensional space. To improve the performance of our pipeline, marginalised stacked autoencoders are used here to learn frequent LBP codes and map the high dimensional space to a lower dimension dense space. We demonstrate its performance using both low and high complexity simulated metagenomic data and compare the performance of our method with several existing techniques including principal component analysis (PCA) in the dimension reduction step and fc-mer frequency in feature extraction step.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Marginalised stack denoising autoencoders for metagenomic data binning\",\"authors\":\"S. Kouchaki, Santosh Tirunagari, Avraam Tapinos, D. Robertson\",\"doi\":\"10.1109/CIBCB.2017.8058552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shotgun sequencing has facilitated the analysis of complex microbial communities. Recently we have shown how local binary patterns (LBP) from image processing can be used to analyse the sequenced samples. LBP codes represent the data in a sparse high dimensional space. To improve the performance of our pipeline, marginalised stacked autoencoders are used here to learn frequent LBP codes and map the high dimensional space to a lower dimension dense space. We demonstrate its performance using both low and high complexity simulated metagenomic data and compare the performance of our method with several existing techniques including principal component analysis (PCA) in the dimension reduction step and fc-mer frequency in feature extraction step.\",\"PeriodicalId\":283115,\"journal\":{\"name\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2017.8058552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

霰弹枪测序促进了对复杂微生物群落的分析。最近,我们展示了如何使用图像处理中的局部二值模式(LBP)来分析测序样本。LBP代码表示一个稀疏的高维空间中的数据。为了提高我们的流水线的性能,这里使用边缘堆叠自编码器来学习频繁的LBP代码,并将高维空间映射到低维密集空间。我们使用低复杂度和高复杂度的模拟宏基因组数据证明了其性能,并将我们的方法与现有的几种技术进行了性能比较,包括降维步骤中的主成分分析(PCA)和特征提取步骤中的fc-mer频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marginalised stack denoising autoencoders for metagenomic data binning
Shotgun sequencing has facilitated the analysis of complex microbial communities. Recently we have shown how local binary patterns (LBP) from image processing can be used to analyse the sequenced samples. LBP codes represent the data in a sparse high dimensional space. To improve the performance of our pipeline, marginalised stacked autoencoders are used here to learn frequent LBP codes and map the high dimensional space to a lower dimension dense space. We demonstrate its performance using both low and high complexity simulated metagenomic data and compare the performance of our method with several existing techniques including principal component analysis (PCA) in the dimension reduction step and fc-mer frequency in feature extraction step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信