Wiener系统盲反演的自相关函数免疫激励优化

S. A. Fernandez, D. Fantinato, J. Filho, R. Attux, Daniel G. Silva
{"title":"Wiener系统盲反演的自相关函数免疫激励优化","authors":"S. A. Fernandez, D. Fantinato, J. Filho, R. Attux, Daniel G. Silva","doi":"10.1109/CEC.2018.8477724","DOIUrl":null,"url":null,"abstract":"Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence “signature” which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Immune-Inspired Optimization with Autocorrentropy Function for Blind Inversion of Wiener Systems\",\"authors\":\"S. A. Fernandez, D. Fantinato, J. Filho, R. Attux, Daniel G. Silva\",\"doi\":\"10.1109/CEC.2018.8477724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence “signature” which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非线性系统的盲反演是一项复杂的任务,需要关于源的某种先验信息,例如,它是否由独立样本组成,或者,特别是在这项工作中,假设通过自相关函数已知的依赖“签名”。此外,它还涉及求解非线性多模态优化问题,以确定逆模型的参数。因此,我们提出了一种Wiener系统反演的盲方法,该方法由基于相关系数的准则与著名的CLONALG免疫启发优化元启发式方法相结合组成。实验结果验证了该方法对连续和离散信号的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immune-Inspired Optimization with Autocorrentropy Function for Blind Inversion of Wiener Systems
Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence “signature” which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信