芯片基因表达数据的高效两阶段模糊聚类

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay
{"title":"芯片基因表达数据的高效两阶段模糊聚类","authors":"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay","doi":"10.1109/ICIT.2006.49","DOIUrl":null,"url":null,"abstract":"This article presents an efficient two-stage clustering method for clustering microarray gene expression time series data. The algorithm is based on the identification of genes having significant membership to multiple classes. A recently proposed variable string length genetic scheme and an iterated version of well known fuzzy C-means algorithm are utilized as the underlying clustering techniques. The performance of the two-stage clustering technique has been compared with the hierarchical clustering algorithms, those are widely used for clustering gene expression data, to prove its effectiveness on some publicly available gene expression data.","PeriodicalId":161120,"journal":{"name":"9th International Conference on Information Technology (ICIT'06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient Two-stage Fuzzy Clustering of Microarray Gene Expression Data\",\"authors\":\"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay\",\"doi\":\"10.1109/ICIT.2006.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an efficient two-stage clustering method for clustering microarray gene expression time series data. The algorithm is based on the identification of genes having significant membership to multiple classes. A recently proposed variable string length genetic scheme and an iterated version of well known fuzzy C-means algorithm are utilized as the underlying clustering techniques. The performance of the two-stage clustering technique has been compared with the hierarchical clustering algorithms, those are widely used for clustering gene expression data, to prove its effectiveness on some publicly available gene expression data.\",\"PeriodicalId\":161120,\"journal\":{\"name\":\"9th International Conference on Information Technology (ICIT'06)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Information Technology (ICIT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2006.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Information Technology (ICIT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种高效的两阶段聚类方法,用于聚类微阵列基因表达时间序列数据。该算法基于对多个类别具有重要隶属关系的基因的识别。采用了最近提出的变字符串长度遗传方案和迭代版的模糊c均值算法作为底层聚类技术。将两阶段聚类技术的性能与广泛用于基因表达数据聚类的层次聚类算法进行了比较,证明了其在一些公开的基因表达数据上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Two-stage Fuzzy Clustering of Microarray Gene Expression Data
This article presents an efficient two-stage clustering method for clustering microarray gene expression time series data. The algorithm is based on the identification of genes having significant membership to multiple classes. A recently proposed variable string length genetic scheme and an iterated version of well known fuzzy C-means algorithm are utilized as the underlying clustering techniques. The performance of the two-stage clustering technique has been compared with the hierarchical clustering algorithms, those are widely used for clustering gene expression data, to prove its effectiveness on some publicly available gene expression data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信